Skip to main content
Log in

Auditory feedback is necessary for long-term maintenance of high-frequency sound syllables in the song of adult male budgerigars (Melopsittacus undulatus)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Among avian species that communicate using vocalization, songbirds (oscine Passeriformes), hummingbirds (Trochiliformes), and parrots (Psittaciformes) are vocal learners. Early studies showed that songbirds require auditory feedback for song development in young and maintenance in adults. To determine whether auditory feedback is also necessary for adult song maintenance in non-passerine species, we deprived adult male budgerigars (Psittaciformes) of auditory input by surgical cochlear removal. Songs of the deafened birds changed within 6 months after auditory deprivation. In postoperative songs, high narrowband syllables, which comprised frequency-modulated narrowband elements with relatively high fundamental frequencies of 2–4 kHz, decreased significantly. High harmonic broadband syllables, with fundamental frequencies ≥2 kHz, also decreased. The altered proportions of syllables were subsequently retained, and maintained 12 months after deafening. The sequence linearity score, a parameter representing the stereotypy of the syllable sequence, was higher than that before deafening. The inter-syllable silence was prolonged. Little change was observed in the songs of intact and sham-operated birds. The significant decrease in high-frequency syllables and song alteration followed by stabilization resembled the results with songbirds, although song stabilization took a long time in budgerigars. Therefore, our results suggest that psittacine budgerigars and oscine songbirds require auditory feedback similarly for adult song maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bottjer SW, Arnold AP (1982) Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): Localization with horseradish peroxidase. J Comp Neurol 210:190–197

    Article  PubMed  CAS  Google Scholar 

  • Bottjer SW, Arnold AP (1984) The role of feedback from the vocal organ. I. Maintenance of stereotypical vocalizations by adult zebra finches. J Neurosci 4:2387–2396

    PubMed  CAS  Google Scholar 

  • Brauth SE, Heaton JT, Durand SE, Liang W, Hall WS (1994) Functional anatomy of forebrain auditory pathways in the budgerigar (Melopsittacus undulatus). Brain Behav Evol 44:210–233

    PubMed  CAS  Google Scholar 

  • Brockway BF (1964) Ethological studies of the budgerigar: reproductive behavior. Behaviour 23:294–324

    Google Scholar 

  • Cynx J, von Rad U (2001) Immediate and transitory effects of delayed auditory feedback on bird song production. Anim Behav 62:305–312

    Article  Google Scholar 

  • Dooling RJ (1986) Perception of vocal signals by budgerigars (Melopsittacus undulatus). Exp Biol 45:195–218

    PubMed  CAS  Google Scholar 

  • Eda-Fujiwara H, Okumura H (1992) The temporal pattern of vocalizations in the budgerigar (Melopsittacus undulatus). J Yamashina Inst Ornithol 24:18–31

    Google Scholar 

  • Eda-Fujiwara H, Watanabe A, Okumura H (1995) Effects of deafening on temporal pattern of vocalizations in the budgerigar Melopsittacus undulatus. J Ethol 13:145–152

    Article  Google Scholar 

  • Eda-Fujiwara H, Kinoshita M, Okumura H (1997) Response of the telencephalic neurons of the budgerigar Melopsittacus undulatus to species-specific warble song elements. Zool Sci 14:13–19

    Article  Google Scholar 

  • Farabaugh SM, Wild JM (1997) Reciprocal connections between primary and secondary auditory pathways in the telencephalon of the budgerigar (Melopsittacus undulatus). Brain Res 747:18–25

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh SM, Brown ED, Dooling RJ (1992) Analysis of warble song of the budgerigar Melopsittacus undulatus. Bioacoustics 4:111–130

    Google Scholar 

  • Farabaugh SM, Linzenbold A, Dooling RJ (1994) Vocal Plasticity in budgerigars (Melopsittacus undulatus): evidence for social factors in the learning of contact calls. J Comp Psychol 108:81–92

    Article  PubMed  CAS  Google Scholar 

  • Gahr M (2000) Neural song control system of hummingbirds: comparison to swifts, vocal learning (songbirds) and nonlearning (suboscines) passerines, and vocal learning (budgerigars) and nonlearning (dove, owl, gull, quail, chicken) nonpasserines. J Comp Neurol 426:182–196

    Article  PubMed  CAS  Google Scholar 

  • Heaton JT, Brauth SE (1999) Effects of deafening on the development of nestling and juvenile vocalizations in budgerigars (Melopsittacus undulatus). J Comp Psychol 113:314–320

    Article  PubMed  CAS  Google Scholar 

  • Heaton JT, Dooling RJ, Farabaugh SM (1999) Effects of deafening on the calls and warble song of adult budgerigars (Melopsittacus undulatus). J Acoust Soc Am 105:2010–2019

    Article  PubMed  CAS  Google Scholar 

  • Jarvis ED, Mello CV (2000) Molecular mapping of brain areas involved in parrot vocal communication. J Comp Neurol 419:1–31

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1963) The role of auditory feedback in the vocal behavior of the domestic fowl. Z Tierpsychol 20:349–367

    Google Scholar 

  • Konishi M (1965) The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z Tierpsychol 22:770–783

    PubMed  CAS  Google Scholar 

  • Kroodsma DE, Konishi M (1991) A suboscine bird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback. Anim Behav 42:477–487

    Article  Google Scholar 

  • Leonardo A, Konishi M (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399:466–470

    Article  PubMed  CAS  Google Scholar 

  • Marler P, Waser MS (1977) Role of auditory feedback in canary song development. J Comp Physiol Psychol 91:8–16

    Article  PubMed  CAS  Google Scholar 

  • Nordeen KW, Nordeen EJ (1992) Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav Neural Biol 57:58–66

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F (1968) Auditory experience and song development in the chaffinch Fringilla coelebs. Ibis 110:549–568

    Google Scholar 

  • Nottebohm F (1971) Neural lateralization of vocal control in a passerine bird: I. Song. J Exp Zool 177:229–262

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F (1972) The origins of vocal learning. Am Nat 106:116–140

    Article  Google Scholar 

  • Nottebohm F, Nottebohm ME (1976) Left hypoglossal dominance in the control of canary and white-crowned sparrow song. J Comp Physiol 108:171–192

    Article  Google Scholar 

  • Nottebohm F, Nottebohm ME (1978) Relationship between song repertoire and age in the canary Serinus canarius. Z Tierpsychol 46:298–305

    Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Yoneda T (1995) Effect of tracheosyringeal nerve section on sexually dimorphic distance calls in Bengalese finches (Lonchura striata var. domestica). Zool Sci 12:801–805

    Article  Google Scholar 

  • Okanoya K, Yamaguchi A (1997) Adult Bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax. J Neurobiol 33:343–356

    Article  PubMed  CAS  Google Scholar 

  • Price PH (1979) Developmental determinants of structure in zebra finch song. J Comp Physiol Psychol 93:260–277

    Article  Google Scholar 

  • Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning. J Neurosci 11:2896–2913

    PubMed  CAS  Google Scholar 

  • Schwartzkopff J (1949) Über den Zusammenhang von Gehör und Vibrationssinn bei Vögeln. Experientia 15:159–161

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1991) Phylogeny and classification of birds. Yale University Press, New Haven

    Google Scholar 

  • Striedter GF (1994) The vocal control pathways in budgerigars differ from those in songbirds. J Comp Neurol 343:35–56

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF, Freibott L, Hile AG, Burley NT (2003) For whom the male calls: an effect of audience on contact call rate and repertoire in budgerigars, Melopsittacus undulatus. Anim Behav 65:875–882

    Article  Google Scholar 

  • Suthers RA (1999) The motor basis of vocal performance in songbirds. In: Hauser MD, Konishi M (eds) The design of animal communication. MIT Press, Cambridge, pp 37–62

    Google Scholar 

  • von Békésy G (1959) Similarities between hearing and skin sensations. Psychol Rev 66:1–22

    Article  Google Scholar 

  • von Gierke HE, Oestreicher HL, Franke EK, Parrack HO, von Wittern WW (1952) Physics of vibrations in living tissues. J Appl Physiol 4:886–900

    PubMed  CAS  Google Scholar 

  • Watanabe A, Aoki K (1998) The role of auditory feedback in the maintenance of song in adult male Bengalese finches Lonchura striata var. domestica. Zool Sci 15:837–841

    Article  Google Scholar 

  • Watanabe A, Sakaguchi H, Hessler NA (2005) Effects of deafening on song pattern of adult male zebra finches: a direct comparison with Bengalese finches. Zool Sci 22:1513

    Article  Google Scholar 

  • Watanabe A, Li R, Kimura T, Sakaguchi H (2006) Lesions of an avian forebrain nucleus prevent changes in protein kinase C levels associated with deafening-induced vocal plasticity in adult songbirds. Eur J Neurosci 23:2447–2457

    Article  PubMed  Google Scholar 

  • Williams H, Crane LA, Hale TK, Esposito MA, Nottebohm F (1992) Right-side dominance for song control in the zebra finch. J Neurobiol 23:1006–1020

    Article  PubMed  CAS  Google Scholar 

  • Woolley SMN, Rubel EW (1997) Bengalese finches Lonchura striata domestica depend upon auditory feedback for the maintenance of adult song. J Neurosci 17:6380–6390

    PubMed  CAS  Google Scholar 

  • Wyndham E (1980) Diurnal cycle, behaviour and social organization of the Budgerigar Melopsittacus undulatus. Emu 80:25–33

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Women’s University Prize for Academic Excellence. We thank Drs. H. Sakaguchi, K. Aoki, R. Li, S. Nagata and R. Imaichi for their helpful comments. Y. Yoshida, Y. Yoshimatsu and N. Nakahara helped us for song analysis, and J. Kushner for improving the manuscript. This experiment was complied with the “Principles of animal care”, publication No. 86–23, revised 1985 of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiko Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, A., Eda-Fujiwara, H. & Kimura, T. Auditory feedback is necessary for long-term maintenance of high-frequency sound syllables in the song of adult male budgerigars (Melopsittacus undulatus). J Comp Physiol A 193, 81–97 (2007). https://doi.org/10.1007/s00359-006-0173-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0173-y

Keywords

Navigation