Skip to main content
Log in

High and low temperatures have unequal reinforcing properties in Drosophila spatial learning

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24°C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24°C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24°C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24°C, were found. Temperatures equally above and below 24°C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24°C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf–Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blind H31. J Neurogenet 3:87–109

    Article  PubMed  CAS  Google Scholar 

  • Bitterman ME (1975) The comparative analysis of learning. Science 188:699–709

    Article  PubMed  Google Scholar 

  • Collett TS, Collett M (2004) How do insects represent familiar terrain? J Physiol Paris 98:259–264

    Article  PubMed  Google Scholar 

  • Diegelmann S, Zars M, Zars T (2006) Genetic dissociation of acquisition and memory strength in the heat-box spatial learning paradigm in Drosophila. Learn Mem 13:72–83

    Article  PubMed  Google Scholar 

  • Dura JM, Preat T, Tully T (1993) Identification of linotte, a new gene affecting learning and memory in Drosophila melanogaster. J Neurogenet 9:1–14

    Article  PubMed  CAS  Google Scholar 

  • Guo A, Li L, Xia SZ, Feng CH, Wolf R, Heisenberg M (1996) Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. Learn Mem 3:49–59

    Article  PubMed  CAS  Google Scholar 

  • Harlow HF (1959) The formation of learning sets. Psychol Rev 56:51–65

    Article  Google Scholar 

  • Heisenberg M, Wolf R, Brembs B (2001) Flexibility in a single behavioral variable of Drosophila. Learn Mem 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR (1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell 68:479–489

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ (2003) Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci 6:267–273

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two parameters of visual pattern recognition in the Drosophila brain. Nature 439:551–556

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hulse S, Plumpe T, Schaupp F, Schuttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102:3040–3045

    Article  PubMed  CAS  Google Scholar 

  • Morris RG (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth 11:47–60

    Article  CAS  Google Scholar 

  • Putz G, Heisenberg M (2002) Memories in Drosophila heat-box learning. Learn Mem 9:349–359

    Article  PubMed  Google Scholar 

  • Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA (2005) The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 19:419–424

    Article  PubMed  CAS  Google Scholar 

  • Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc Natl Acad Sci USA 93:6079–6084

    Article  PubMed  CAS  Google Scholar 

  • Strauss R, Pichler J (1998) Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J Comp Physiol [A] 182:411–423

    Article  CAS  Google Scholar 

  • Tracey WD, Wilson RI, Laurent G, Benzer S (2003) painless, a Drosophila gene essential for nociception. Cell 113:261–273

    Article  PubMed  CAS  Google Scholar 

  • Wolf R, Heisenberg M (1991) Basic organization of operant behavior as revealed in Drosophila flight orientation. J Comp Physiol [A] 169:699–705

    CAS  Google Scholar 

  • Wustmann G, Heisenberg M (1997) Behavioral manipulation of retrieval in a spatial memory task for Drosophila melanogaster. Learn Mem 4:328–336

    Article  PubMed  CAS  Google Scholar 

  • Zars T (2001) Two thermosensors in Drosophila have different behavioral functions. J Comp Physiol [A] 187:235–242

    Article  CAS  Google Scholar 

  • Zars T (2003) Hot and cold in Drosophila larvae. Trends Neurosci 26:575–577

    Article  PubMed  CAS  Google Scholar 

  • Zars T, Wolf R, Davis R, Heisenberg M (2000) Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: In search of the engram. Learn Mem 7:18–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Giselle Carmichael and Jan Judy-March for excellent technical assistance. Dr. Andreas Keller kindly provided critical comments to a previous version of the manuscript. This research was supported by the University of Missouri-Columbia and a University of Missouri System Research Board Grant. The experiments described comply with the ‘Principles of animal care’, publication No. 86-23, revised 1985 of the National Institute of Health, and with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Zars.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zars, M., Zars, T. High and low temperatures have unequal reinforcing properties in Drosophila spatial learning. J Comp Physiol A 192, 727–735 (2006). https://doi.org/10.1007/s00359-006-0109-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0109-6

Keywords

Navigation