Skip to main content
Log in

Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L.

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We studied associative visual learning in harnessed honeybees trained with monochromatic lights associated with a reward of sucrose solution delivered to the antennae and proboscis, to elicit the proboscis extension reflex (PER). We demonstrated five properties of visual learning under these conditions. First, antennae deprivation significantly increased visual acquisition, suggesting that sensory input from the antennae interferes with visual learning. Second, covering the compound eyes with silver paste significantly decreased visual acquisition, while covering the ocelli did not. Third, there was no significant difference in the visual acquisition between nurse bees, guard bees, and foragers. Fourth, bees conditioned with a 540-nm light stimulus exhibited light-induced PER with a 618-nm, but not with a 439-nm light stimulus. Finally, bees conditioned with a 540-nm light stimulus exhibited PER immediately after the 439-nm light was turned off, suggesting that the bees reacted to an afterimage induced by prior adaptation to the 439-nm light that might be similar to the 540-nm light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel JR, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437:363–383

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Leung HT, Pak WL, Sokolowski MB, Robinson GE (2003) cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J Exp Biol 206:2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Bitterman ME, Menzel R (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psysiol 97:107–119

    CAS  Google Scholar 

  • Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373

    Article  PubMed  Google Scholar 

  • Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78

    Article  PubMed  CAS  Google Scholar 

  • Faber T, Menzel R (2001) Visualizing mushroom body response to a conditioned odor in honeybees. Naturewissenschaften 88:472–476

    Article  CAS  Google Scholar 

  • Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380

    PubMed  CAS  Google Scholar 

  • Farooqui T, Vaessin H, Smith BH (2004) Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J Insect Physiol 50:701–713

    Article  PubMed  CAS  Google Scholar 

  • Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 2:473–478

    Article  PubMed  CAS  Google Scholar 

  • Gerber B, Smith B (1998) Visual modulation of olfactory learning in honeybee. J Exp Biol 201:2213–2217

    PubMed  CAS  Google Scholar 

  • Giger AD, Srinivasan MV (1996) Pattern recognition in honeybees: chromatic properties of orientation analysis. J Comp Physiol A 178:763–769

    Article  Google Scholar 

  • Giurfa M, Vorobyev MV, Kevan PG, Menzel R (1996) Detection of colored stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Giurfa M, Vorobyev MV, Brandt R, Posner B, Menzel R (1997) Discrimination of colored stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–244

    Article  Google Scholar 

  • Giurfa M, Zhang S, Jenett A, Menzel R, Srinlvasan MV (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930–933

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726–735

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Malun D (2004) Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learn Mem 11:294–302

    Article  PubMed  Google Scholar 

  • Grünbaum L, Müller U (1998) Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J Neurosci 18:4384–4392

    PubMed  Google Scholar 

  • Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60

    Article  PubMed  CAS  Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Article  Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5:146–156

    PubMed  CAS  Google Scholar 

  • Hempel de Ibarra NH, Giurfa M (2003) Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Anim Behav 66:903–910

    Article  Google Scholar 

  • Horridge A (2003) Visual resolution of the orientation cue by the honeybee (Apis mellifera). J Insect Physiol 49:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Kamikouchi A, Takeuchi H, Sawata M, Ohashi K, Natori S, Kubo T (1998) Preferential expression of the gene for a putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera L. Biochem Biophys Res Commun 242:181–186

    Article  PubMed  CAS  Google Scholar 

  • Kamikouchi A, Takeuchi H, Sawata M, Natori S, Kubo T (2000) Concentrated expression of Ca2+/calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee Apis mellifera L. J Comp Neurol 417:501–510

    Article  PubMed  CAS  Google Scholar 

  • Kunieda T, Kubo T (2004) In vivo gene transfer into the adult honeybee brain by using electroporation. Biochem Biophys Res Commun 318:25–31

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara M (1957) Bildung des bedingten reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J Fac Sci Hokkaido Univ Zool 13:458–464

    Google Scholar 

  • Lozono VC, Armengaug C, Gauthier M (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol A 187:249–254

    Article  Google Scholar 

  • Lunney GH (1970) Using analysis of dependent variable: an empirical study. J Educ Meas 7:263–269

    Article  Google Scholar 

  • Masuhr M, Menzel R (1972) In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 315–322

  • Mauelshagen J (1993) Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J Neurophysiol 69:609–625

    PubMed  CAS  Google Scholar 

  • Menzel R, Blakers M (1976) Colour receptors in the bee eye morphology and spectral sensitivity. J Comp Physiol 108:11–33

    Article  Google Scholar 

  • Menzel R, Backhaus W (1991) The perception of colour. In: Gouras P (ed) Vision and visual dysfunction, vol 6. Macmillan, London, pp 262–293

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera I. The connections and spatial organization of the mushroom bodies. Phil Trans R Soc Lond B 298:309–354

    Article  Google Scholar 

  • Mobbs PG (1984) Neural networks in the mushroom bodies of the honeybee. J Insect Physiol 30:43–58

    Article  Google Scholar 

  • Müller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16:541–549

    Article  PubMed  Google Scholar 

  • Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27:159–168

    Article  PubMed  Google Scholar 

  • Müller D, Abel R, Brandt M, Zöckler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A 188:359–370

    Article  Google Scholar 

  • Neumeyer C (1981) Chromatic adaptation in the honeybee: successive color contrast and color constancy. J Comp Physiol A 144:543–553

    Article  Google Scholar 

  • Ray S, Ferneyhough B (1997) The effects of age on olfactory learning and memory in the honey bee Apis mellifera. Neuroreport 8:789–793

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Ferneyhough B (1999) Behavioral development and olfactory learning in the honeybee (Apis mellifera). Dev Psychobiol 34:21–27

    Article  PubMed  CAS  Google Scholar 

  • Sachse S, Galizia CG (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur J Neurosci 18:2119–2132

    Article  PubMed  Google Scholar 

  • Sandoz JC, Galizia CG, Menzel R (2003) Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes. Neuroscience 120:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Stach S, Benard L, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429:758–761

    Article  PubMed  CAS  Google Scholar 

  • Takeda K (1961) Classical conditioned response in the honey bee. J Ins Physiol 6:168–179

    Article  CAS  Google Scholar 

  • Takeuchi H, Kage E, Sawata M, Kamikouchi A, Ohashi K, Ohara M, Fujiyuki T, Kunieda T, Sekimizu K, Natori S, Kubo T (2001) Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain. Insect Mol Biol 10:487–494

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Fujiyuki T, Shirai K, Matsuo Y, Kamikouchi A, Fujinawa Y, Kato A, Tsujimoto A, Kubo T (2002) Identification of genes expressed preferentially in the honeybee mushroom bodies by combination of differential display and cDNA microarray. FEBS Lett 513:230–234

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Sawata M, Matsuo Y, Kato A, Tsujimoto A, Nakajima T, Kubo T (2004) Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera. Cell Tiss Res 316:281–293

    Article  CAS  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Winston ML (1987) The biology of the honeybee. Harvard University Press, Cambridge

    Google Scholar 

  • Witthöft W (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z Morphol Oekol Tiere 61:160–184

    Google Scholar 

  • Zhang S, Srinivasan MV, Zhu H, Wong J (2004) Grouping of visual objects by honeybees. J Exp Biol 207:3289–3298

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to Dr. Martin Giurfa (Université Paul Sabatier) for his valuable comments in writing this manuscript and instruction for the statistical analysis. This work was supported by Grants-in Aid from Bio-oriented Technology Research Advancement Institution (BRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Takeuchi.

Electronic supplementary material

Supplementary material 1

Supplementary material 2

Supplementary material 3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, S., Takeuchi, H., Arikawa, K. et al. Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L.. J Comp Physiol A 192, 691–700 (2006). https://doi.org/10.1007/s00359-005-0091-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0091-4

Keywords

Navigation