Skip to main content
Log in

Development of swimming in the medicinal leech, the gradual acquisition of a behavior

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Observing the development of behavior provides an assay for the developmental state of an embryo’s nervous system. We have previously described the development of behaviors that were largely confined to one or a few segments. We now extend the work to a kinematic analysis of the development of swimming, a behavior that requires coordination of the entire body. When leech embryos first begin to swim they make little forward progress, but within several days they swim as effectively as adults. This increase in efficacy depends on changes in body shape and on improved intersegmental coordination of the swim central pattern generator. These kinematic details suggest how the swim central pattern generating circuit is assembled during embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ED:

Embryonic development

CPG:

Central pattern generator

CNS:

Central nervous system

References

  • Bate M (1999) Development of motor behavior. Curr Opin Neurobiol 9:670–675

    Article  PubMed  CAS  Google Scholar 

  • Beckoff A (1984) Neural control of hatching: fate of the pattern generator for the leg movements in post-hatching chicks. J Neurosci 4:2659–2666

    PubMed  Google Scholar 

  • Bonnot A, Whelan PJ, Mentis GZ, O’Donovan MJ (2002) Locomotor-like activity generated by the neonatal mouse spinal cord. Brain Res Brain Res Rev 40:141–151

    Article  PubMed  Google Scholar 

  • Branchereau PD, Morin D, Bonnot A, Ballion B, Chapron J, Fiala D (2000) Development of lumbar rhythmic networks: From embryonic to neonate locomotor-like patterns in the mouse. Brain Res Bull 53:711–718

    Article  PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Debski EA, O’Gara BA, Friesen WO (1995) Neuronal control of leech swimming. J Neurobiol 27:403–418

    Article  PubMed  CAS  Google Scholar 

  • Buchanan JT (1999) The roles of spinal interneurons and motoneurons in the lamprey locomotor network. Prog Brain Res 123:311–321

    PubMed  CAS  Google Scholar 

  • Cang J, Friesen WO (2002) Model for intersegmental coordination of leech swimming: central and sensory mechanisms. J Neurophysiol 87:2760–2769

    PubMed  Google Scholar 

  • Cang J, Yu X, Friesen WO (2001) Sensory modification of leech swimming: interactions between ventral stretch receptors and swim-related neurons. J Comp Physiol A 187:569–579

    PubMed  CAS  Google Scholar 

  • Casasnovas B, Fénelon VS, Meyrand P (1999) Ontogeny of rhythmic motor networks in the stomatogastric nervous system. J Comp Physiol A 185:361–365

    Article  Google Scholar 

  • Cohen AH, Dobrov TA, Li G, Kiemel T, Baker MT (1990) The development of the lamprey pattern generator for locomotion. J Neurobiol 21:958–969

    Article  PubMed  CAS  Google Scholar 

  • Consoulas C, Duch C, Bayline RJ, Levine RB (2000) Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain Res Bull 53:571–583

    Article  PubMed  CAS  Google Scholar 

  • Crisp KM, Mesce KA (2003) To swim or not to swim: regional effects of serotonin, octopamine and amine mixtures in the medicinal leech. J Comp Physiol A 198:461–470

    Article  CAS  Google Scholar 

  • Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68:85–111

    Article  PubMed  CAS  Google Scholar 

  • Fénelon VS, LeFeuvre Y, Meyrand P (2004) Phylogenetic, ontogenetic, and adult adaptive plasticity of rhythmic neural networks: a common neuromodulatory mechanism? J Comp Physiol A 190:691–705

    Article  Google Scholar 

  • Fernandez J, Stent G (1982) Embryonic development of the hirudinid leech Hirudo medicinalis: structure, development, and segmentation of the germinal plate. J Embryol Exp Morphol 72:71–96

    PubMed  CAS  Google Scholar 

  • Fitzsimonds RM, Poo MM (1998) Retrograde signaling in the development and modification of synapses. Physiol Rev 78:143–170

    PubMed  CAS  Google Scholar 

  • Friesen WO, Poon M, Stent GS (1978) Neuronal control of swimming in the medicinal leech. IV Identification of a network of oscillatory interneurones. J Exp Biol 75:25–43

    PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (2002) Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res Brain Res Rev 40:92–106

    Article  PubMed  Google Scholar 

  • Guan KL, Rao Y (2003) Signaling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4:941–956

    PubMed  CAS  Google Scholar 

  • Huang Y, Jellies J, Johansen KM, Johansen J (1998) Development and pathway formation of peripheral neurons during leech embryogenesis. J Comp Neurol 397:394–402

    Article  PubMed  CAS  Google Scholar 

  • Jordan CE (1998) Scale effects in the kinematics and dynamics of swimming leeches. Can J Zool 76:1869–1877

    Article  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kristan WB Jr, Stent GS, Ort CA (1974a) Neuronal control of swimming in the medicinal leech. I. Dynamics of the swimming rhythm. J Comp Physiol 94:97–119

    Article  Google Scholar 

  • Kristan WB Jr, Stent GS, Ort CA (1974b) Neuronal control of swimming in the medicinal leech. III. Impulse patterns of the motor neurons. J Comp Physiol 94:155–176

    Article  Google Scholar 

  • Kristan WB Jr, Eisenhart FJ, Johnson LJ, French KA (2000) Development of neuronal circuits and behaviors in the medicinal leech. Brain Res Bull 53:561–570

    Article  PubMed  Google Scholar 

  • Marin-Burgin A, Eisenhart FJ, Baca SM, Kristan WB Jr, French KA (2005) Sequential development of electrical and chemical synaptic connections generates a specific behavioral circuit in the leech. J Neurosci 25:2478–2489

    Article  PubMed  CAS  Google Scholar 

  • Mason A, Kristan WB Jr (1982) Neuronal excitation, inhibition, and modulation of leech longitudinal muscle. J Comp Physiol A 146:527–536

    Article  Google Scholar 

  • O’Donovan MJ, Wenner P, Chub N, Tabak J, Rinzel J (1998) Mechanisms of spontaneous activity in the developing spinal cord and their relevance to locomotion. Ann NY Acad Sci 860:130–141

    Article  PubMed  CAS  Google Scholar 

  • Ort CA, Kristan WB Jr, Stent GS (1974) Neuronal control of swimming in the leech. II. Identification and connections of the motor neurons. J Comp Physiol 94:121–154

    Article  Google Scholar 

  • Pearce RA, Friesen WO (1988) A model for intersegmental coordination in the leech nerve cord. Biol cyberns 58:301–311

    Article  CAS  Google Scholar 

  • Pflüger H-J (1999) Neuromodulation during motor development and behavior. Curr Opin Neurobiol 9:683–689

    Article  PubMed  Google Scholar 

  • Poon M, Friesen WO, Stent GS (1978) Neuronal control of swimming in the medicinal leech. V. Connections between the oscillatory interneurons and the motor neurons. J Exp Biol 75:43–63

    Google Scholar 

  • Reynolds S, French KA, Baader A, Kristan WB Jr (1998a) Staging of middle and late embryonic development in the medicinal leech, Hirudo medicinalis. J Comp Neurol 402:155–167

    Article  CAS  Google Scholar 

  • Reynolds S, French KA, Baader A, Kristan WB Jr (1998b) Development of spontaneous and evoked behaviors in the medicinal leech. J Comp Neurol 402:168–180

    Article  CAS  Google Scholar 

  • Roberts A (2000) Early functional organization of spinal neurons in developing lower vertebrates. Brain Res Bull 53:585–593

    Article  PubMed  CAS  Google Scholar 

  • Roberts A, Soffe SR, Wolf ES, Yoshida M, Zhao F-Y (1998) Central circuits controlling locomotion in young frog tadpoles. Ann NY Acad Sci 860:19–34

    Article  PubMed  CAS  Google Scholar 

  • Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37:622–632

    Article  PubMed  CAS  Google Scholar 

  • Stent GS, Kristan WB Jr, Torrence SA, French KA, Weisblat DA (1992) Development of the leech nervous system. Int Rev Neurobiol 33:109–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Otto Friesen for his very insightful and helpful comments on the manuscript and the reviewers for their useful suggestions. This work was supported by NIH research grants MH43396 and NS35336 to W.B. Kristan Jr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. French.

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, K.A., Chang, J., Reynolds, S. et al. Development of swimming in the medicinal leech, the gradual acquisition of a behavior. J Comp Physiol A 191, 813–821 (2005). https://doi.org/10.1007/s00359-005-0003-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0003-7

Keywords

Navigation