Skip to main content
Log in

Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Wasps (Paravespula germanica) were trained and tested at an artificial feeding site, using convex shapes that produced colour contrast, luminance contrast, or motion contrast against the background. With each of the three types of contrast, we tested the wasps’ capacity to discriminate the learned shape from novel shapes. In addition, in each experiment we tested the wasps’ capability to recognize the learned shape when it offered a different type of contrast than that it had during the training. With the coloured shapes, a side-glance at the colour discrimination performance of the wasps was possible in addition. Wasps are found to discriminate between a variety of convex shapes regardless of the type of contrast that they produce against the background. Mainly, they discriminate the learned shape from novel shapes even if the colour of the shapes or the type of contrast they produce against the background is altered in the test. Thus, wasps generalize the learned shape from one colour to another, as well as between colour contrast, luminance contrast, and motion contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baumgärtner H (1928) Der Formensinn und die Sehschärfe der Bienen. Z Vergl Physiol 7:56–143

    Google Scholar 

  • Beier W (1984) Beobachtungen und Experimente zur Orientierung der deutschen Wespe (Paravespula germanica) am Futterplatz. Zool Beitr N F 28:321–348

    Google Scholar 

  • Beier W, Menzel R (1972) Untersuchungen über den Farbensinn der deutschen Wespe (Paravespula germanica F., Hymenoptera, Vespidae): verhaltensphysiologischer Nachweis des Farbensehens. Zool Jahrb Abt Allg Zool Physiol Tiere 76:441–454

    Google Scholar 

  • Brünnert U, Kelber A, Zeil J (1994) Ground-nesting bees determine the location of their nest relative to a landmark by other than angular size cues. J Comp Physiol A 175:363–370

    Google Scholar 

  • Burr DC, Morrone MC, Ross L (1994) Selective suppression of the magnocellular visual pathway during saccadic eye movement. Nature 371:511–513

    CAS  PubMed  Google Scholar 

  • Campan R, Lehrer M (2002) Discrimination of closed shapes in two bee species (Megachile rotundata and Apis mellifera). J Exp Biol 205:559–572

    PubMed  Google Scholar 

  • Campan R, Lehrer M (2003) Bees generalize spatial features acquired through image motion. Proceedings of the Göttingen Neurobiological Conference 27. Thieme, Stuttgart, p 635

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant. Naturwissenschaften 86:361–377

    CAS  Google Scholar 

  • Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F (2000) Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids. Behav Ecol 11:536–543

    Article  Google Scholar 

  • Collett TS (1978) Peering—a locust behaviour pattern for obtaining motion parallax information. J Exp Biol 76:237–241

    Google Scholar 

  • Collett TS, Lehrer M (1993) Looking and learning: a spatial pattern in the orientation flight of Vespula vulgaris. Philos Trans R Soc London Ser B 252:129–134

    Google Scholar 

  • Collett TS, Zeil J (1997) The selection and use of landmarks in insects. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 41–66

  • Dafni A, Lehrer M, Kevan P (1997) Floral spatial parameters and insect spatial vision. Biol Rev 72:239–282

    Article  Google Scholar 

  • Dukas R, Duan JJ (2000) Potential fitness consequences of associative learning in a parasitoid wasp. Behav Ecol 11:536–543

    Article  Google Scholar 

  • Efler D, Ronacher B (2000) Evidence against a retinotopic-template matching in honeybees’ pattern recognition. Vision Res 40:3391–3403

    Article  CAS  PubMed  Google Scholar 

  • Fauria K, Campan R (1998) Do solitary bees Osmia cornuta Latr and Osmia lignaria Cresson use proximal visual cues to localize their nest? J Insect Behav 11:649–699

    Article  Google Scholar 

  • Franceschini N, Riehle A, Le Nestour A (1989) Directionally selective motion detection by insect neurons. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 359–390

  • Fischer S, Samietz J, Wäckers FL, Dorn S (2001) Interaction of vibrational and visual cues in parasitoid host location. J Comp Physiol A 187:785–791

    Google Scholar 

  • von Frisch K (1915) Der Farbsinn und Formensinn der Bienen. Zool Jahrb Abt Allg Zool Physiol Tiere 35:1–182

    Google Scholar 

  • von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York

  • Frost BJ, Wylie DR, Wang Y-C (1990) The processing of object and self-motion in the tectofugal and accessory optic pathways of birds. Vision Res 30:1677–1688

    CAS  PubMed  Google Scholar 

  • Gegenfurtner KR, Hawken MJ (1996) Interaction of motion and colour in the visual pathways. Trends Neurosci 19:394–401

    CAS  PubMed  Google Scholar 

  • Giurfa M, Vorobyev M (1998) The angular range of achromatic target detection by honeybees. J Comp Physiol A 183:101–110

    Article  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458–461

    Article  CAS  Google Scholar 

  • Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of colored stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–244

    Article  Google Scholar 

  • Hempel de Ibarra N, Giurfa M (2003) Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Anim Behav 66:903–910

    Article  Google Scholar 

  • Hertz M (1929) Die Organisation des optischen Feldes bei der Biene I. Z Vergl Physiol 8:693–748

    Google Scholar 

  • Hertz M (1930) Die Organisation des optischen Feldes bei der Biene II. Z Vergl Physiol 11:107–145

    Google Scholar 

  • Hertz M (1933) Über figurale Intensitäten und Qualitäten in der optischen Wahrnehmung der Biene. Biol Zbl 53:10–40

    Google Scholar 

  • Horridge GA (1996) Pattern vision of the honeybee (Apis mellifera): the significance of the angle subtended by the target. J Insect Physiol 42:693–703

    Article  CAS  Google Scholar 

  • Horridge GA (1997) Pattern discrimination by the honeybee: disruption as a cue. J Comp Physiol A 181:267–277

    Article  Google Scholar 

  • Jander R, Fabritius M, Fabritius M (1970) Die Bedeutung von Gliederung und Kantenrichtung für die visuelle Formenunterscheidung der Wespe Dolichovespula saxonica am Flugloch. Z Tierpsychol 27:881–893

    Google Scholar 

  • Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27:67–105

    Google Scholar 

  • Lehrer M (1991) Bees which turn back and look. Naturwissenschaften 78:274–276

    Google Scholar 

  • Lehrer M (1993a) Why do bees turn back and look? J Comp Physiol 172:544–556

    Google Scholar 

  • Lehrer M (1993b) Parallel processing of motion, shape and color in the visual system of the bee. In: Wiese K, Gribakin FG, Popov AV, Reinninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 266–272

  • Lehrer M (1994) Spatial vision in the honeybee: the use of different cues in different tasks. Vision Res 34:2363–2385

    CAS  PubMed  Google Scholar 

  • Lehrer M (ed) (1997) Orientation and communication in arthropods. Birkhäuser, Basel

  • Lehrer M (1999) Dorsoventral asymmetry of colour discrimination in bees. J Comp Physiol A 184:195–206

    Article  Google Scholar 

  • Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82:145–147

    CAS  Google Scholar 

  • Lehrer M, Campan R (2001) Discrimination of closed shapes in two bee species, Apis mellifera and Megachile rotundata. In: Elsner N, Kreutzberg GW (eds) The neurosciences at the turn of the century. Proceeding of the 28th Göttingen Neurobiology Conference 28. Thieme, Stuttgart, p 693

  • Lehrer M, Wehner R, Srinivasan MV (1985) Visual scanning behaviour in honeybees. J Comp Physiol 157:405–415

    CAS  Google Scholar 

  • Lewis WJ, Takasu K (1990) Use of learned odours by a parasitic wasp in accordance with host and food needs. Nature 348:635–636

    Article  Google Scholar 

  • Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468

    PubMed  Google Scholar 

  • Meiners T, Wäckers F, Lewis WJ (2003) Associative learning of complex odours in parasitoid host location. Chem Senses 28:231–236

    Article  CAS  PubMed  Google Scholar 

  • Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z Vergl Physiol 56:22–62

    Google Scholar 

  • Menzel R (1987) Farbensehen blütenbesuchender Insekten. Sonderdruck FU Berlin im Auftrag des Bundesministeriums für Forschung und Technologie

  • Menzel R, Backhaus W (1989) Colour vision in honeybee: phenomena and physiological mechanisms. In: Stavenga D, Hardie R (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 281–297

  • Menzel R, Lieke E (1983) Antagonistic color effects in spatial vision of honeybees. J Comp Physiol 151:441–448

    Google Scholar 

  • Meyhofer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971

    Article  CAS  PubMed  Google Scholar 

  • Murray IJ, Plainis S (2003) Contrast coding and magno/parvo segregation revealed in reaction time studies. Vision Res 43:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Niggebrügge C, Hempel de Ibarra N (2003) Colour-dependent target detection by bees. J Comp Physiol A 189:915–918

    Article  Google Scholar 

  • Olson DM, Rains GC, Meiners T, Takasu K, Tertuliano M, Tumlinson H, Wäckers FL, Lewis WJ (2003) Parasitic wasps learn and report diverse chemicals with unique conditionable behaviors. Chem Senses 28:739

    Article  CAS  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based color vision. J Comp Physiol A 170:23–40

    CAS  PubMed  Google Scholar 

  • Reichardt W (1969) Movement perception in insects. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic Press, New York, pp 465–493

  • Ronacher B (1979) Äquivalenz zwischen Grössen- und Helligkeitsunterschieden im Rahmen der visuellen Wahrnehmung der Honigbiene. Biol Cybern 32:63–75

    Google Scholar 

  • Ronacher B (1992) Influence of unrewarded stimuli on the classification of visual patterns by honey bees. Ethology 92:205–216

    Google Scholar 

  • Ronacher B, Duft U (1996) An image-matching mechanism describes a generalization task in honeybees. J Comp Physiol A 178:803–812

    Google Scholar 

  • Schiller (1990) Trends Neurosci 13 392 Occurrence Handle1:STN:280:By6D2cfos10%3D Occurrence Handle1700509

    CAS  PubMed  Google Scholar 

  • Shafir S (1996) Color discrimination conditioning of a wasp Polybia occidentalis (Hymenoptera: Vespidae). Biotropica 28:243–251

    Google Scholar 

  • Srinivasan MV (1985) Shouldn’t directional movement detection necessarily be “colour-blind”? Vision Res 25:997–1000

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MV, Lehrer M (1984) Temporal acuity of honeybee vision: behavioural studies using moving stimuli. J Comp Physiol 155:297–312

    Google Scholar 

  • Srinivasan MV, Lehrer M, Horridge GA (1990) Visual figure-ground discrimination in the honeybee: the role of motion parallax at boundaries. Proc R Soc London Ser B 238:331–350

    Google Scholar 

  • Srinivasan MV, Zhang SW, Whitney K (1994) Visual discrimination of pattern orientation by honeybees. Philos Trans R Soc London Ser B 343:199–210

    Google Scholar 

  • Thomson JD, Chittka L (2001) Pollinator individuality: when does it matter? In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 191–213

  • Van Hateren HJ, Srinivasan MV, Wait PB (1990) Pattern recognition in bees: orientation discrimination. J Comp Physiol A 167:649–654

    Google Scholar 

  • Van Iersel JJA, van den Assem J (1964) Aspects of orientation in the digger wasp Bembix rostrata. Anim Behav [Suppl 1]:145–162

    Google Scholar 

  • Vorobyev M, Brandt R (1997) How do insect pollinators discriminate colors? Isr J Plant Sci 45:103–113

    Google Scholar 

  • Wäckers FL, Lewis WJ (1999) A comparison of color-, shape- and pattern-learning by the hymenopteran parasitoid Microplitis croceipes. J Comp Physiol A 184:387–393

    Article  Google Scholar 

  • Walcher F, Kral K (1994) Visual deprivation and distance estimation in the praying mantis larva. Physiol Entomol 19:230–240

    Google Scholar 

  • Wallace GK (1959) Visual scanning in the desert locust Schistocerca gregaria Forskål. J Exp Biol 36:512–525

    Google Scholar 

  • Wehner R (1974) Pattern recognition. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 75–113

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology VII/6C. Springer, Berlin Heidelberg New York, pp 287–616

  • Willis A, Anderson SJ (2002) Colour and luminance interactions in the visual perception of motion. Proc R Soc London Ser B 269:1011–1016

    Article  PubMed  Google Scholar 

  • Wolf E, Zerrahn-Wolf G (1935) The effect of light intensity, area and flicker frequency on the visual reactions of the honeybee. J Gen Physiol 18:853–863

    Article  Google Scholar 

  • Zeil J (1993a) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). I. Description of flight. J Comp Physiol A 172:189–205

    Google Scholar 

  • Zeil J (1993b) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). II. Similarity between orientation and return flights and the use of motion parallax. J Comp Physiol A 172:209–224

    Google Scholar 

  • Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in ground-nesting bees and wasps. J Exp Biol 199:245–252

    PubMed  Google Scholar 

  • Zerrahn G (1934) Formdressur und Formenunterscheidung bei der Honigbiene. Z Vergl Physiol 20:117–150

    Google Scholar 

  • Zhang SW, Srinivasan MV (1994) Prior experience enhances pattern discrimination in insect vision. Nature 368:330–332

    Article  Google Scholar 

  • Zhang SW, Srinivasan MV, Collett TS (1995) Convergent processing in honeybee vision: multiple channels for the recognition of shape. Proc Natl Acad Sci USA 92:3029–3031

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Swiss German Television, and particularly Gabriela Neuhaus, who provided the impulse for conducting the present study. Thanks are also due to Helmut Heise for constructing the experimental apparatus, and to Lars Chittka and Martin Giurfa for very valuable comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Lehrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehrer, M., Campan, R. Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast. J Comp Physiol A 190, 651–663 (2004). https://doi.org/10.1007/s00359-004-0523-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0523-6

Keywords

Navigation