Skip to main content
Log in

Different patterns of circadian oscillation in the suprachiasmatic nucleus of hamster, mouse, and rat

  • Rapid Communication
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Although spontaneous neural firing in the mammalian suprachiasmatic nucleus is accepted to peak once during mid-subjective day, dual activity peaks have been reported in horizontal brain slices taken from hamsters. These two peaks were interpreted as new evidence for the theory of dual circadian oscillators and raised the expectation that such activity would be found in other circadian model systems. We examined hamster, mouse, and rat slices in both coronal and horizontal planes and found a second peak of activity only in hamster horizontal preparations. This raises interesting questions about the relative circadian physiology of these important experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CT:

circadian time

SCN:

suprachiasmatic nucleus

References

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    CAS  PubMed  Google Scholar 

  • Akiyama M, Kouzu Y, Takahashi S, Wakamatsu H, Moriya T, Maetani M, Watanabe S, Tei H, Sakaki Y, Shibata S (1999) Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J Neurosci 19:1115–1121

    CAS  PubMed  Google Scholar 

  • Albers HE, Liou SY, Stopa EG, Zoeller RT (1992) Neurotransmitter colocalization and circadian rhythms. Prog Brain Res 92:289–307

    CAS  PubMed  Google Scholar 

  • Biello SM, Dafters RI (2001) MDMA and fenfluramine alter the response of the circadian clock to a serotonin agonist in vitro. Brain Res 920:202–209

    Article  CAS  PubMed  Google Scholar 

  • Cassone VM, Roberts MH, Moore RY (1988) Effects of melatonin on 2-deoxy-[1–14C]glucose uptake within rat suprachiasmatic nucleus. Am J Physiol 255: R332–R337

    CAS  PubMed  Google Scholar 

  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU (1999) Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 96:13468–13473

    Article  CAS  PubMed  Google Scholar 

  • Daan S, Albrecht U, Horst GT van der, Illnerova H, Roenneberg T, Wehr TA, Schwartz WJ (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms 16:105–116

    CAS  PubMed  Google Scholar 

  • Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE, Alster JM, McPherson PS, Campbell KP, Gillette MU (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394:381–384

    CAS  PubMed  Google Scholar 

  • Dunlap JC (2000) A new slice on an old problem. Nat Neurosci 3:305–306

    Article  CAS  PubMed  Google Scholar 

  • Gillette MU (1986) The suprachiasmatic nuclei: circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Res 379:176–181

    CAS  PubMed  Google Scholar 

  • Gillette MU (1991) SCN electrophysiology in vitro: rhythmic activity and endogenous clock properties. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 125–143

  • Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198–200

    CAS  PubMed  Google Scholar 

  • Groos G, Hendriks J (1982) Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34:283–288

    CAS  PubMed  Google Scholar 

  • Hamada T, LeSauter J, Venuti JM, Silver R (2001) Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci 21:7742–7750

    CAS  PubMed  Google Scholar 

  • Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol 280:C110–C118

    CAS  Google Scholar 

  • Iglesia HO de la, Meyer J, Carpino A Jr, Schwartz WJ (2000) Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 290:799–801

    Article  PubMed  Google Scholar 

  • Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76:5962–5966

    CAS  PubMed  Google Scholar 

  • Jagota A, Iglesia HO de la, Schwartz WJ (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci 3:372–376

    CAS  PubMed  Google Scholar 

  • Kim DY, Kang HC, Shin HC, Lee KJ, Yoon YW, Han HC, Na HS, Hong SK, Kim YI (2001) Substance P plays a critical role in photic resetting of the circadian pacemaker in the rat hypothalamus. J Neurosci 21:4026–4031

    PubMed  Google Scholar 

  • LeSauter J, Stevens P, Jansen H, Lehman MN, Silver R (1999) Calbindin expression in the hamster SCN is influenced by circadian genotype and by photic conditions. Neuroreport 10:3159–3163

    CAS  PubMed  Google Scholar 

  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    CAS  PubMed  Google Scholar 

  • Lydic R, Albers HE, Tepper B, Moore-Ede MC (1982) Three-dimensional structure of the mammalian suprachiasmatic nuclei: a comparative study of five species. J Comp Neurol 204:225–237

    CAS  PubMed  Google Scholar 

  • Meijer JH, Watanabe K, Schaap J, Albus H, Detari L (1998) Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci 18:9078–9087

    CAS  PubMed  Google Scholar 

  • Meyer-Spasche A, Reed HE, Piggins HD (2002) Neurotensin phase-shifts the firing rate rhythm of neurons in the rat suprachiasmatic nuclei in vitro. Eur J Neurosci 16:339–344

    Article  PubMed  Google Scholar 

  • Moga MM, Moore RY (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389:508–534

    CAS  PubMed  Google Scholar 

  • Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 42:2783–2789

    CAS  PubMed  Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206

    CAS  PubMed  Google Scholar 

  • Moore RY, Silver R (1998) Suprachiasmatic nucleus organization. Chronobiol Int 15:475–487

    CAS  PubMed  Google Scholar 

  • Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98

    Article  CAS  PubMed  Google Scholar 

  • Morin LP (1994) The circadian visual system. Brain Res Brain Res Rev 19:102–127

    Article  CAS  PubMed  Google Scholar 

  • Muscat L, Huberman AD, Jordan CL, Morin LP (2003) Crossed and uncrossed retinal projections to the hamster circadian system. J Comp Neurol 466:513–524

    Article  PubMed  Google Scholar 

  • Pittendrigh C, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. J Comp Physiol 106:223–252

    Google Scholar 

  • Pol AN van den (1991) Glutamate and aspartate immunoreactivity in hypothalamic presynaptic axons. J Neurosci 11:2087–2101

    PubMed  Google Scholar 

  • Prosser RA (2001) Glutamate blocks serotonergic phase advances of the mammalian circadian pacemaker through AMPA and NMDA receptors. J Neurosci 21:7815–7822

    CAS  PubMed  Google Scholar 

  • Schaap J, Albus H, Eilers PH, Detari L, Meijer JH (2001) Phase differences in electrical discharge rhythms between neuronal populations of the left and right suprachiasmatic nuclei. Neurosci 108:359–363

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Oomura Y, Kita H, Hattori K (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247:154–158

    CAS  PubMed  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586

    CAS  PubMed  Google Scholar 

  • Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011

    CAS  PubMed  Google Scholar 

  • Tcheng TK, Gillette MU (1996) A novel carbon fiber bundle microelectrode and modified brain slice chamber for recording long-term multiunit activity from brain slices. J Neurosci Methods 69:163–169

    Article  CAS  PubMed  Google Scholar 

  • Tischkau SA, Gallman EA, Buchanan GF, Gillette MU (2000) Differential cAMP gating of glutamatergic signaling regulates long-term state changes in the suprachiasmatic circadian clock. J Neurosci 20:7830–7837

    CAS  PubMed  Google Scholar 

  • Yan L, Takekida S, Shigeyoshi Y, Okamura H (1999) Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94:141–150

    Article  PubMed  Google Scholar 

  • Yannielli PC, Harrington ME (2000) Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo. Neuroreport 11:1587–1591

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service Grants, NS22155, NS35859 (M.U.G.), and NS11134 (P.W.B.), HL67007 (M.U.G.) and GM07134 (P.T.L.). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of funding institutions. The authors thank Shelley Tischkau and Yanxun Yu, who contributed electrophysiological data presented here, and David Burgoon, who provided statistical consultation. All protocols involving the use of animals were approved by the Institutional Animal Care and Use Committee of The University of Illinois and were in conformity with local, state, and federal regulations for the care and use of laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Gillette.

Additional information

P.W. Burgoon and P.T. Lindberg contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgoon, P.W., Lindberg, P.T. & Gillette, M.U. Different patterns of circadian oscillation in the suprachiasmatic nucleus of hamster, mouse, and rat. J Comp Physiol A 190, 167–171 (2004). https://doi.org/10.1007/s00359-003-0486-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0486-z

Keywords

Navigation