Skip to main content
Log in

Turbulence generated by an array of opposed piston-driven synthetic jet actuators

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper investigates turbulence generated by an array of opposed piston-driven synthetic jet actuators in a closed chamber. Each actuator intermittently generates supersonic jets with four orifice holes, and the interaction of 32 supersonic jets produces turbulence. Velocity measurement is conducted with particle image velocimetry using oil mist as the tracer particles, which are internally generated by the synthetic jet actuators. The turbulence with a small mean velocity is generated at the central region of the chamber, where the root-mean-square (rms) velocity fluctuations are also almost uniform in space. The rms velocity fluctuations around the chamber center are about 1.2 times larger in the jet direction than in other directions. The strongly intermittent nature of supersonic synthetic jets causes large-scale intermittency of turbulence. The turbulent Reynolds number and turbulent Mach number reach \(O(10^3)\) and \(O(10^{-2})\), respectively, at the chamber center. Although the turbulent Mach number at the chamber center is not large, the generation process of turbulence due to the supersonic jets is strongly influenced by compressibility. Therefore, density variations exist in turbulence, where the shadowgraph image exhibits the brightness distribution with a characteristic length scale related to the Kolmogorov scale. The shape of longitudinal velocity auto-correlation functions and the relation between the turbulent Reynolds number and velocity derivative flatness agree well with previous studies on incompressible turbulence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agui JH, Briassulis G, Andreopoulos Y (2005) Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J Fluid Mech 524:143–195

    Article  MATH  Google Scholar 

  • Alvelius K (1999) Random forcing of three-dimensional homogeneous turbulence. Phys Fluids 11(7):1880–1889

    Article  MATH  Google Scholar 

  • Anas M, Joshi P, Verma MK (2020) Freely decaying turbulence in a finite domain at finite Reynolds number. Phys Fluids 32(9):095109

    Article  Google Scholar 

  • Antonia RA, Chambers AJ (1980) On the correlation between turbulent velocity and temperature derivatives in the atmospheric surface layer. Boundary-Layer Meteorol 18(4):399–410

    Article  Google Scholar 

  • Assoudi A, Saïd NM, Bournot H, Le Palec G (2019) Comparative study of flow characteristics of a single offset jet and a turbulent dual jet. Heat Mass Transf 55(4):1109–1131

    Article  Google Scholar 

  • Bellani G, Variano EA (2014) Homogeneity and isotropy in a laboratory turbulent flow. Exp Fluids 55(1):1–12

    Article  Google Scholar 

  • Beresh S, Kearney S, Wagner J, Guildenbecher D, Henfling J, Spillers R, Pruett B, Jiang N, Slipchenko M, Mance JSR (2015) Pulse-burst PIV in a high-speed wind tunnel. Meas Sci Tech 26(9):095305

    Article  Google Scholar 

  • Bharath BK (2015) Design and fabrication of a supersonic wind tunnel. Int J Eng Appl Sci 2(5):257914

    Google Scholar 

  • Birouk M, Sarh B, Gökalp I (2003) An attempt to realize experimental isotropic turbulence at low Reynolds number. Flow Turbul Combust 70(1–4):325–348

    Article  MATH  Google Scholar 

  • Bonnet JP, Jayaraman V, De Roquefort TA (1984) Structure of a high-Reynolds-number turbulent wake in supersonic flow. J Fluid Mech 143:277–304

    Article  Google Scholar 

  • Bradley D, Lawes M, Morsy ME (2019) Measurement of turbulence characteristics in a large scale fan-stirred spherical vessel. J Turbul 20(3):195–213

    Article  MathSciNet  Google Scholar 

  • Briassulis G, Agui JH, Andreopoulos Y (2001) The structure of weakly compressible grid-generated turbulence. J Fluid Mech 432:219–283

    Article  MATH  Google Scholar 

  • Carter D, Petersen A, Amili O, Coletti F (2016) Generating and controlling homogeneous air turbulence using random jet arrays. Exp Fluids 57(12):1–15

    Article  Google Scholar 

  • Clemens NT, Mungal MG (1995) Large-scale structure and entrainment in the supersonic mixing layer. J Fluid Mech 284:171–216

    Article  Google Scholar 

  • Comte-Bellot G, Corrsin S (1966) The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech 25(4):657–682

    Article  Google Scholar 

  • Crittenden TM, Glezer A (2006) A high-speed, compressible synthetic jet. Phys Fluids 18(1):017107

    Article  Google Scholar 

  • Davidson PA (2004) Turbulence: an introduction for scientists and engineers. Oxford Univ

  • De Silva IPD, Fernando HJS (1994) Oscillating grids as a source of nearly isotropic turbulence. Phys Fluids 6(7):2455–2464

    Article  Google Scholar 

  • Djenidi L, Kamruzzaman M, Antonia RA (2015) Power-law exponent in the transition period of decay in grid turbulence. J Fluid Mech 779:544–555

    Article  MathSciNet  MATH  Google Scholar 

  • Donzis DA, John JP (2020) Universality and scaling in homogeneous compressible turbulence. Phys Rev Fluids 5(8):084609

    Article  Google Scholar 

  • Fincham AM, Maxworthy T, Spedding GR (1996) Energy dissipation and vortex structure in freely decaying, stratified grid turbulence. Dyn Atmos Oceans 23(1–4):155–169

    Article  Google Scholar 

  • Gilarranz JL, Traub LW, Rediniotis OK (2005) A new class of synthetic jet actuators-part I: design, fabrication and bench top characterization. ASME J Fluids Eng 127(2):367–376

    Article  Google Scholar 

  • Goepfert C, Marié JL, Chareyron D, Lance M (2010) Characterization of a system generating a homogeneous isotropic turbulence field by free synthetic jets. Exp Fluids 48(5):809–822

    Article  Google Scholar 

  • Honkan A, Andreopoulos J (1992) Rapid compression of grid-generated turbulence by a moving shock wave. Phys Fluids 4(11):2562–2572

    Article  Google Scholar 

  • Hopfinger EJ, Toly JA (1976) Spatially decaying turbulence and its relation to mixing across density interfaces. J Fluid Mech 78(1):155–175

    Article  Google Scholar 

  • Hwang W, Eaton JK (2004) Creating homogeneous and isotropic turbulence without a mean flow. Exp Fluids 36(3):444–454

    Article  Google Scholar 

  • Hwang W, Eaton JK (2006) Homogeneous and isotropic turbulence modulation by small heavy (\({St}\sim 50\)) particles. J Fluid Mech 564:361

  • Jimenez J, Wray AA (1998) On the characteristics of vortex filaments in isotropic turbulence. J Fluid Mech 373:255–285

    Article  MathSciNet  MATH  Google Scholar 

  • Kang HS, Chester S, Meneveau C (2003) Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech 480:129–160

    Article  MathSciNet  MATH  Google Scholar 

  • Keller J, Merzkirch W (1990) Interaction of a normal shock wave with a compressible turbulent flow. Exp Fluids 8(5):241–248

    Article  Google Scholar 

  • Kerr RM (1985) Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J Fluid Mech 153:31–58

    Article  MATH  Google Scholar 

  • Kitamura T, Nagata K, Sakai Y, Sasoh A, Terashima O, Saito H, Harasaki T (2014) On invariants in grid turbulence at moderate Reynolds numbers. J Fluid Mech 738:378–406

    Article  Google Scholar 

  • Klewicki JC, Hirschi CR (2004) Flow field properties local to near-wall shear layers in a low Reynolds number turbulent boundary layer. Phys Fluids 16(11):4163–4176

    Article  MATH  Google Scholar 

  • Kouchi T, Iwachido M, Nakagawa T, Nagata Y, Yanase S (2020) Transverse jet mixing in a supersonic grid turbulence. In: Proceedings of the AIAA Scitech 2020 Conference, p 2040

  • Kovasznay LSG (1950) The hot-wire anemometer in supersonic flow. J Aero Sci 17(9):565–572

    Article  Google Scholar 

  • Krawczynski JF, Renou B, Danaila L (2010) The structure of the velocity field in a confined flow driven by an array of opposed jets. Phys Fluids 22(4):045104

    Article  MATH  Google Scholar 

  • Krogstad PÅ, Davidson PA (2010) Is grid turbulence saffman turbulence? J Fluid Mech 642:373

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo AYS, Corrsin S (1971) Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid. J Fluid Mech 50(2):285–319

    Article  Google Scholar 

  • Marié JL, Tronchin T, Grosjean N, Méès L, Öztürk OC, Fournier C, Barbier B, Lance M (2017) Digital holographic measurement of the Lagrangian evaporation rate of droplets dispersing in a homogeneous isotropic turbulence. Exp Fluids 58(2):11

    Article  Google Scholar 

  • Mi J, Xu M, Zhou T (2013) Reynolds number influence on statistical behaviors of turbulence in a circular free jet. Phys Fluids 25(7):075101

    Article  Google Scholar 

  • Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J Fluid Mech 320(1):331–368

    Article  Google Scholar 

  • Nasr A, Lai J (1997) Comparison of flow characteristics in the near field of two parallel plane jets and an offset plane jet. Phys Fluids 9(10):2919–2931

    Article  Google Scholar 

  • Ozono S, Ikeda H (2018) Realization of both high-intensity and large-scale turbulence using a multi-fan wind tunnel. Exp Fluids 59(12):1–12

    Article  Google Scholar 

  • Pérez-Alvarado A, Mydlarski L, Gaskin S (2016) Effect of the driving algorithm on the turbulence generated by a random jet array. Exp Fluids 57(2):20

    Article  Google Scholar 

  • Praud O, Fincham AM, Sommeria J (2005) Decaying grid turbulence in a strongly stratified fluid. J Fluid Mech 522:1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Ravi S, Peltier SJ, Petersen EL (2013) Analysis of the impact of impeller geometry on the turbulent statistics inside a fan-stirred, cylindrical flame speed vessel using piv. Exp Fluids 54(1):1424

    Article  Google Scholar 

  • Sakakibara H, Watanabe T, Nagata K (2018) Supersonic piston synthetic jets with single/multiple orifice. Exp Fluids 59(5):76

    Article  Google Scholar 

  • Scarano F, Van Oudheusden BW (2003) Planar velocity measurements of a two-dimensional compressible wake. Exp Fluids 34(3):430–441

    Article  Google Scholar 

  • Semenov ES (1965) Measurement of turbulence characteristics in a closed volume with artificial turbulence. Combust Explos ShockWaves 1(2):57–62

    Article  Google Scholar 

  • Sreenivasan KR, Antonia RA (1997) The phenomenology of small-scale turbulence. Ann Rev Fluid Mech 29(1):435–472

    Article  MathSciNet  Google Scholar 

  • Takamure K, Ozono S (2019) Relative importance of initial conditions on outflows from multiple fans. Phys Rev E 99(1):013112

    Article  Google Scholar 

  • Tamba T, Fukushima G, Kayumi M, Iwakawa A, Sasoh A (2019) Experimental investigation of the interaction of a weak planar shock with grid turbulence in a counter-driver shock tube. Phys Rev Fluids 4(7):073401

    Article  Google Scholar 

  • Thompson SM, Turner JS (1975) Mixing across an interface due to turbulence generated by an oscillating grid. J Fluid Mech 67(2):349–368

    Article  Google Scholar 

  • Traub LW, Sweet M, Nilssen K (2012) Evaluation and characterization of a lateral synthetic jet actuator. J Aircraft 49(4):1039–1050

    Article  Google Scholar 

  • Uberoi MS, Wallis S (1967) Effect of grid geometry on turbulence decay. Phys Fluids 10:1216–1224

    Article  Google Scholar 

  • Valente PC, Vassilicos JC (2011) The decay of turbulence generated by a class of multiscale grids. J Fluid Mech 687:300–340

    Article  MATH  Google Scholar 

  • Valente PC, Onishi R, da Silva CB (2014) Origin of the imbalance between energy cascade and dissipation in turbulence. Phys Rev E 90(2):023003

    Article  Google Scholar 

  • Van Atta CW, Antonia RA (1980) Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys Fluids 23(2):252–257

    Article  Google Scholar 

  • Variano EA, Cowen EA (2008) A random-jet-stirred turbulence tank. J Fluid Mech 604:1–32

    Article  MATH  Google Scholar 

  • Variano EA, Bodenschatz E, Cowen EA (2004) A random synthetic jet array driven turbulence tank. Exp Fluids 37(4):613–615

    Article  Google Scholar 

  • Veeravalli S, Warhaft Z (1989) The shearless turbulence mixing layer. J Fluid Mech 207:191–229

    Article  Google Scholar 

  • Watanabe T, Nagata K (2018) Integral invariants and decay of temporally developing grid turbulence. Phys Fluids 30(10):105111

    Article  Google Scholar 

  • Watanabe T, Zhang X, Nagata K (2019) Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation. Comput Fluids 194:104314

    Article  MathSciNet  Google Scholar 

  • Watanabe T, Tanaka K, Nagata K (2020) Characteristics of shearing motions in incompressible isotropic turbulence. Phys Rev Fluids 5(7):072601

    Article  Google Scholar 

  • Watanabe T, Tanaka K, Nagata K (2021) Solenoidal linear forcing for compressible, statistically steady, homogeneous isotropic turbulence with reduced turbulent mach number oscillation. Phys Fluids 33(9):095108

    Article  Google Scholar 

  • Wernet MP (2007) Temporally resolved PIV for space-time correlations in both cold and hot jet flows. Meas Sci Tech 18(5):1387

    Article  Google Scholar 

  • Wernet MP (2016) Application of Tomo-PIV in a large-scale supersonic jet flow facility. Exp Fluids 57(9):144

    Article  Google Scholar 

  • Williams O, Van Buren T, Smits AJ (2015) A new method for measuring turbulent heat fluxes using PIV and fast-response cold-wires. Exp Fluids 56(7):1–10

    Article  Google Scholar 

  • Wu J, Radespiel R (2017) Damping insert materials for settling chambers of supersonic wind tunnels. Exp Fluids 58(3):19

    Article  Google Scholar 

  • Xiang X, Madison TJ, Sellappan P, Spedding GR (2015) The turbulent wake of a towed grid in a stratified fluid. J Fluid Mech 775:149–177

    Article  MathSciNet  MATH  Google Scholar 

  • Xu S, Huang S, Huang R, Wei W, Cheng X, Ma Y, Zhang Y (2017) Estimation of turbulence characteristics from PIV in a high-pressure fan-stirred constant volume combustion chamber. Appl Therm Eng 110:346–355

    Article  Google Scholar 

  • Yap CT, Van Atta CW (1993) Experimental studies of the development of quasi-two-dimensional turbulence in stably stratified fluid. Dyn Atmos Oceans 19(1–4):289–323

    Article  Google Scholar 

  • Yoffe SR, McComb WD (2018) Onset criteria for freely decaying isotropic turbulence. Phys Rev Fluids 3(10):104605

    Article  Google Scholar 

  • Zimmermann R, Xu H, Gasteuil Y, Bourgoin M, Volk R, Pinton J, Bodenschatz E (2010) The Lagrangian exploration module: An apparatus for the study of statistically homogeneous and isotropic turbulence. Rev Sci Instrum 81(5):055112

    Article  Google Scholar 

  • Zwart PJ, Budwig R, Tavoularis S (1997) Grid turbulence in compressible flow. Exp Fluids 23(6):520–522

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. H. Sakakibara for his help in developing the piston-driven synthetic jet actuators. This work was supported by JSPS KAKENHI Grant Number 18H01367, Paloma Environmental Technology Development Foundation, and Tatematsu Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Watanabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Effects of spatial resolution

Appendix: Effects of spatial resolution

The PIV measurement conducted in this study has a spatial resolution of \(10\eta\)-\(20\eta\). The effects of the unresolved velocity fluctuations on velocity statistics are assessed with direct numerical simulation (DNS) of incompressible turbulence. Here, we use the DNS database of a temporally evolving turbulent planar jet with the jet Reynolds number of 40,000 (Watanabe et al. 2019). An energy spectrum of streamwise velocity fluctuations \(E_u(k_x)\) is calculated on the jet centerline, where \(k_x\) is the streamwise wavenumber. We define the cutoff wavenumber as \(k_C=2\pi /C\eta _0\) with a parameter C and the Kolmogorov scale \(\eta _0\). Here, \(\eta _0\) is calculated with the turbulent kinetic energy dissipation rate \(\varepsilon =2\nu \overline{S_{ij}S_{ij}}\), where \(S_{ij}\) is the rate-of-strain tensor. Streamwise velocity variance at the scales greater than \(C\eta _0\) is evaluated as \(\overline{{u'}^2}(C)=\int _0^{k_C}E_u(k_x)dk_x\). Similarly, the variance of \(\partial u /\partial x\) at scales greater than \(C\eta _0\) is given by \(\overline{(\partial u' /\partial x)^2}(C)=\int _0^{k_C}k_x^2E_u(k_x)dk_x\). Then, the turbulent Reynolds number \(Re_\lambda (C)\) and Kolmogorov scale \(\eta (C)\) of the filtered velocity are calculated with \(\overline{{u'}^2}(C)\) and \(\overline{(\partial u' /\partial x)^2}(C)\):

$$\begin{aligned} Re_\lambda (C)=\frac{\overline{{u'}^2}}{\nu \sqrt{\overline{(\partial u' /\partial x)^2}}}, ~~ \eta (C)=\left( \frac{\nu ^2}{15\overline{(\partial u' /\partial x)^2}}\right) ^{1/4}. \end{aligned}$$
(6)

Figure 17 shows the cutoff-length dependence of \(\overline{{u'}^2}(C)\), \(Re_\lambda (C)\), and \(\eta (C)\) normalized by their values for \(C=1\). As C increases, the range of the unresolved scale becomes wider. Because velocity fluctuations are dominated by large-scale turbulent motions, \(\overline{{u'}^2}(C)/\overline{{u'}^2}(1)\) stays 1 even for \(C=30\). \(Re_\lambda (C)\) and \(\eta (C)\) increase with C. However, \(Re_\lambda (C)/Re_\lambda (1)\) and \(\eta (C)/\eta (1)\) are less than 1.3 even at \(C=30\). Thus, the present PIV measurement with the spatial resolution of 10–\(20\eta\) is still useful for the approximate estimation of turbulent Reynolds number and Kolmogorov scale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K., Watanabe, T. & Nagata, K. Turbulence generated by an array of opposed piston-driven synthetic jet actuators. Exp Fluids 63, 35 (2022). https://doi.org/10.1007/s00348-021-03351-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03351-z

Navigation