Skip to main content
Log in

Study on the collapse length of compressible rectangular microjets

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The present study focuses on the collapse length of compressible rectangular microjets whose Mach numbers range between 0.3 and 1.5. The microjets are created from a convergent rectangular nozzle whose height is 500 μm at its exit. The techniques of planar laser-induced fluorescence (PLIF) and molecular tagging velocimetry (MTV) are used to visualize the microjets. The PLIF images reveal that each microjet spreads abruptly at a certain location. It is confirmed from the instantaneous MTV images that this location corresponds to the location where the jet starts to collapse. The jet collapse length, which is defined as a distance between the nozzle exit and jet collapse location, is estimated from the PLIF image. The plot of the collapse length versus the jet Reynolds number reveals that the collapse length is inversely proportional to the Reynolds number for subsonic and ideally expanded microjets. On the other hand, the collapse length for underexpanded microjets is almost uniform when the jet Reynolds number is higher than a certain value (~ 103) although the length is inversely proportional to the Reynolds number for the lower Reynolds numbers. To clarify the reason why such peculiarities appear in the underexpanded microjets, the numerical flow simulations are carried out. The results reveal that the collapse length remains constant as long as a jet screech occurs. Consequently, the collapse length of the screeching jet is related to the feedback length in the jet. The critical Reynolds numbers at which laminar-turbulent transition occurs are estimated from the collapse lengths of the microjets without screeching and plotted against the convective Mach number. It is found that the critical Reynolds number increases with the convective Mach number.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

reproduced from Handa et al. (2017)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alskilar MB, Krothapalli A, Lourenco LM (2003) Structure of a rectangular screeching jet: a stereoscopic particle image velocimetry study. J Fluid Mech 489:121–154

    Article  Google Scholar 

  • Aniskin V, Mironov S, Maslov A (2013) Investigation of the structure of supersonic nitrogen microjets. Microfluid Nanofluid 14:605–614

    Article  Google Scholar 

  • Aniskin V, Mironov S, Maslov A, Tsyryulnikov IS (2015) Supersonic axisymmetric microjets: structure and laminar-turbulent transition. Microfluid Nanofluid 19:621–634

    Article  Google Scholar 

  • Bruccoleri AR, Leiter R, Drela M, Lozano P (2012) Experimental effects of nozzle geometry on flow efficiency at low Reynolds numbers. J Propuls Power 28:96–105

    Article  Google Scholar 

  • Dimotakis PE (1991) Turbulent free shear layer mixing and combustion. In: High-speed flight propulsion systems, pp 265–340, Published by AIAA.

  • Doms M, Müller J (2007) Design, fabrication, and characterization of a micro vapor-jet vacuum pump. J Fluids Eng 129:1339–1345

    Article  Google Scholar 

  • Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro free-jet flow. Phys Fluids 21:092001

    Article  Google Scholar 

  • Giordano J, Parisse JD, Perrier P (2008) Numerical study of an original device to generate compressible flow in microchannel. Phys Fluids 20:096101

    Article  Google Scholar 

  • Giordano J, Perrier P, Meister L, Brouillette M (2018) Shock wave attenuation in a micro-channel. Shock Waves 28:1251–1262

    Article  Google Scholar 

  • Han B, Matsuda Y, Egami Y, Handa T (2018) Investigation on choking behavior of gas flow in microducts. Microfluidic Nanofluidic 22:122

    Article  Google Scholar 

  • Handa T, Masuda M, Kashitani M, Yamaguchi Y (2011) Measurement of number densities in supersonic flows using a method based on laser-induced acetone fluorescence. Exp Fluids 50:1685–1694

    Article  Google Scholar 

  • Handa T, Mii K, Sakurai T, Imamura K, Mizuta S, Ando Y (2014) Study on supersonic rectangular microjets using molecular tagging velocimetry. Exp Fluids 55:1725

    Article  Google Scholar 

  • Handa T, Matsuda Y, Egami Y (2016) Phenomena peculiar to underexpanded flows in supersonic micronozzle. Microfluid Nanofluid 20:166

    Article  Google Scholar 

  • Handa T, Kambara H, Harada M (2017) Visualization of supersonic microjets using LIF and MTV techniques. IOP Conf Ser Mater Sci Eng 249:012016

    Article  Google Scholar 

  • Handa T, Matsuda Y, Egami Y (2019) Peculiarities of low-Reynolds-number supersonic flows in long microchannel. Microfluid Nanofluid 23:88

    Article  Google Scholar 

  • Hong C, Yoshida Y, Matsushita S, Ueno I, Asako Y (2015) Supersonic micro-jet of straight micro-tube exit. J Therm Sci Tech 10:JTST0026

    Article  Google Scholar 

  • Huang C, Gregory JW, Sallivan JP (2007) Flow visualization and pressure measurement in micronozzles. J Vis 10:281–288

    Article  Google Scholar 

  • Kai Y, Garen W, Teubner U (2018) Experimental investigation on microshock waves and contact surfaces. Phys Rev Lett 120:064501

    Article  Google Scholar 

  • Krothapalli A, Hsia Y, Baganoff D, Karamcheti K (1986) The role of screech tones in mixing of an underexpanded rectangular jet. J Sound Vib 106:119–143

    Article  Google Scholar 

  • Lempert WR, Boehem M, Jiang N, Gimelshein S, Levin D (2003) Comparison of molecular tagging velocimetry data and direct simulation of Monte Carlo simulations in supersonic micro jet flows. Exp Fluids 34:403–411

    Article  Google Scholar 

  • Mirshekari G, Brouillette M, Giordano J, Hébert C, Parisse J-D, Perrier P (2013) Shock waves in microchannels. J Fluid Mech 724:259–283

    Article  Google Scholar 

  • Nagai H, Naraoka R, Sawada K, Asai K (2008) Pressure-sensitive paint measurement of pressure distribution in a supersonic micronozzle. AIAA J 46:215–222

    Article  Google Scholar 

  • Namer I, Ötügen MV (1988) Velocity measurements in a plane turbulent air jet at moderate Reynolds number. Exp Fluids 6:387–399

    Article  Google Scholar 

  • Namura M, Toriyama T (2013) Experimental study on aerodynamics of microelectromechanical systems based on single-crystal-silicon microscale supersonic nozzle. J Fluids Eng 135:081101

    Article  Google Scholar 

  • Papamoschou D, Roshko A (1988) The compressible turbulent shear layer: an experimental study. J Fluid Mech 197:453–477

    Article  Google Scholar 

  • Phalnikar KA, Kumar R, Alvi FS (2008) Experiments on free and impinging supersonic microjets. Exp Fluids 44:819–830

    Article  Google Scholar 

  • Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357–372

    Article  MathSciNet  Google Scholar 

  • Satoh D, Tanaka S, Yoshida K, Esashi M (2005) Micro-ejector to supply fuel-air mixture to a micro-combustor. Sens Actuators A 119:528–536

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary-layer theory, 9th edn. Springer, Berlin

    Book  Google Scholar 

  • Scroggs SD, Settles GS (1996) An experimental study of microjets. Exp Fluids 21:401–409

    Article  Google Scholar 

  • Takahashi Y, Okajima J, Iga Y, Komiya A, Fu W-S, Maruyama S (2013) Study of supersonic micro-channel for cooling electronic devices. In: Proceedings of ASME 11th Int. Conf. Nanochannel Microchannel Minichannel, ICNMM2013–73134.

  • Tam CKW (1988) The shock-cell structures and screech tone frequencies of rectangular and non-axisymmetric supersonic jets. J Sound Vib 121:135–147

    Article  Google Scholar 

  • Valentich G, Upandhyay P, Kumar R (2016) Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet. Exp Fluids 57:71

    Article  Google Scholar 

  • Walker S, Thomas FO (1997) Experiments characterizing nonlinear shear layer dynamics in supersonic rectangular jet undergoing screech. Phys Fluids 9:2562–2579

    Article  Google Scholar 

  • Wilcox DC (1992) Dilatation-dissipation corrections for advanced turbulence models. AIAA J 30:2639–2646

    Article  Google Scholar 

  • Yamamoto S, Daiguji H (1993) Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Comput Fluids 22:259–270

    Article  MathSciNet  Google Scholar 

  • Zaman KBMQ (1996) Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. J Fluid Mech 316:1–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Handa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handa, T. Study on the collapse length of compressible rectangular microjets. Exp Fluids 61, 196 (2020). https://doi.org/10.1007/s00348-020-03030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-03030-5

Navigation