Skip to main content

Advertisement

Log in

Effects of fiber wettability and size on droplet detachment residue

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper reports on an experimental study devised to better our understanding of the role of Young–Laplace contact angle (YLCA), fiber diameter, fluid viscosity, or droplet size on the volume of droplet residue left on a fiber after droplet detachment. This was made possible using an aqueous ferrofluid droplet deposited on a horizontal filament in a controllable magnetic field. Droplet detachment process was imaged using a high-speed camera and the images were used to obtain residue volume and droplet detachment time. It was found that residue volume decreases with increasing filament’s YLCA or droplet viscosity (in a viscosity range of 1–5.5 mPa s), but it increases with increasing fiber diameter or remains unchanged when increasing droplet volume. Droplet detachment time was found to increase with droplet volume or fiber diameter but remained unaffected by increasing droplet viscosity from 1 to 5.5 mPa s. In addition, droplet detachment time was found to decrease with increasing YLCA of the fiber.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambravaneswaran B, Wilkes ED, Basaran OA (2002) Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys Fluids 14:2606

    Article  MathSciNet  MATH  Google Scholar 

  • Amrei MM, Venkateshan DG, D’Souza N, Atulasimha J, Tafreshi HV (2016) Novel approach to measuring the droplet detachment force from fibers. Langmuir 32:13333–13339

    Article  Google Scholar 

  • Amrei MM, Davoudi M, Chase GG, Tafreshi HV (2017) Effects of roughness on droplet apparent contact angles on a fiber. Sep Purif Technol 180:107–113

    Article  Google Scholar 

  • Brakke KA (1992) The surface evolver. Exp Math 1:141–165

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll BJJ (1976) The accurate measurement of contact angle, phase contact areas, drop volume and Laplace excess pressure in drop-on-fiber systems. J Colloid Interface Sci 57:488–495

    Article  Google Scholar 

  • Chen D, Tan L, Liu H, Hu J, Li Y, Tang F (2010) Fabricating superhydrophilic wool fabrics. Langmuir 26(7):4675–4679

    Article  Google Scholar 

  • Comtet J, Keshavarz B, Bush JWM (2016) Drop impact and capture on a thin flexible fiber. Soft Matter 12:149

    Article  Google Scholar 

  • Contal P, Simao J, Thomas D, Frising T, Calle S, Appert-Collin JC, Bremer D (2004) Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. J Aerosol Sci 35:263–278

    Article  Google Scholar 

  • Davoudi M, Fang J, Chase GG (2016) Barrel shaped droplet movement at junctions of perpendicular fibers with different orientations to the air flow direction. Sep Purif Technol 162:1–5

    Article  Google Scholar 

  • Dawar S, Li H, Dobson J, Chase GG (2006) Drag correlation of drop motion on fibers. Dry Technol 24:1283–1288

    Article  Google Scholar 

  • De Ruiter R, de Ruiter J, Eral HB, Samprebon C, Brinkman M, Mugele F (2012) Buoyant droplets on functional fibers. Langmuir 28:13300–13306

    Article  Google Scholar 

  • Dressaire E, Sauret A, Boulogne F, Stone HA (2016) Drop impact on a flexible fiber. Soft Matter 12:200

    Article  Google Scholar 

  • Gauthier E, Hellstern T, Kevrekidis IG, Benziger J (2012) Drop detachment and motion on fuel cell electrode materials. ACS Appl Mater Interfaces 4:761–771

    Article  Google Scholar 

  • Gilet T, Terwagne D, Vandewalle N (2009) Digital microfluidics on a wire. Appl Phys Lett 95:014106

    Article  Google Scholar 

  • Gilet T, Terwagne D, Vandewalle N (2010) Droplets sliding on fibers. Eur Phys J E Soft Matter Biol Phys 31:253–262

    Article  Google Scholar 

  • Gurau V, Bluemle MJ, Castro ESD, Tsou YM, Man JA Jr, Zawodzinski TA Jr (2006) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers). J Power Sources 160(2):1156–1162

    Article  Google Scholar 

  • Haefner S, Baumchen O, Jacobs K (2015) Capillary droplet propulsion on a fibre. Soft Matter 11:6921–6926

    Article  Google Scholar 

  • Kampa D, Wurster S, Buzengeiger J, Meyer J, Kasper G (2014) Pressure drop and liquid transport through coalescence filter media used for oil mist filtration. Int J Multiph Flow 58:313–324

    Article  Google Scholar 

  • Lin PC, Yang S (2009) Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter 5:1011–1018

    Article  Google Scholar 

  • Lorenceau E, Clanet C, Quéré D (2004) Capturing drops with a thin fiber. J Colloid Interface Sci 279:192–197

    Article  Google Scholar 

  • McHale G, Newton MI (2002) Global geometry and equilibrium shapes of liquid drops on fibers. Colloids Surf A 206:79–86

    Article  Google Scholar 

  • Mead-Hunter R, Mullins BJ, Becker T, Braddock RD (2011) Evaluation of the force required to move a coalesced liquid droplet along a fiber. Langmuir 27:227–232

    Article  Google Scholar 

  • Mei M, Fan J, Shou D (2013) The gravitational effect on the geometric profiles of droplets on horizontal fibers. Soft Matter 9:10324–10334

    Article  Google Scholar 

  • Michielsen S, Lee HJ (2007) Design of superhydrophobic surface using woven structures. Langmuir 23:6004–6010

    Article  Google Scholar 

  • Muller TK, Meyer J, Thébault E, Kasper G (2014) Impact of an oil coating on particle deposition and dust holding capacity of fibrous filters. Powder Technol 253:247–255

    Article  Google Scholar 

  • Mullins BJ, Pfrang A, Braddock RD, Schimmel T, Kasper G (2007) Detachment of liquid droplets from fibers—experimental and theoretical evaluation of detachment force due to interfacial tension effects. J Colloid Interface Sci 312:333–340

    Article  Google Scholar 

  • Pan Z, Weyer F, Pitt WG, Vandewalle N, Truscott TT (2018) Drop on bent fibre. Soft Matter. https://doi.org/10.1039/c7sm01729d

    Google Scholar 

  • Patel SU, Chase GG (2014) Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes. Sep Purif Technol 126:62–68

    Article  Google Scholar 

  • Rajgarhia SS, Jana SC, Chase GG (2016) Separation of water from ultralow sulphur diesel using novel polymer nanofiber-coated glass fiber media. ACS Appl Mater Interfaces 8:21683–21690

    Article  Google Scholar 

  • Rebouillat S, Letellier B, Steffenino B (1999) Wettability of single fibers—beyond the single fibers beyond the contact angle approach. Int J Adhes Adhes 19:303–314

    Article  Google Scholar 

  • Reznik SN, Salalha W, Yarin AL, Zussman E (2007) Microscale fibre alignment by a three-dimensional sessile drop on a wettable pad. J Fluid Mech 574:179–207

    Article  MathSciNet  MATH  Google Scholar 

  • Sahu RP, Sinha-Ray S, Yarin AL, Pourdeyhimi B (2013) Blowing drops off a filament. Soft Matter 9:6053–6071

    Article  Google Scholar 

  • Sauret A, Bick AD, Duprat C, Stone HA (2014) Wetting of crossed fibers: multiple steady states and symmetry breaking. EPL 105:56006

    Article  Google Scholar 

  • Seo D, Lee J, Lee C, Nam Y (2016) The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Sci Rep 6:24276

    Article  Google Scholar 

  • Shi W, Anderson MJ, Tulkoff JB, Kennedy BS, Boreyko JB (2018) Fog harvesting with harps. ACS Appl Mater Interfaces 10(14):11979–11986

    Article  Google Scholar 

  • Solmaz M, Park H, Madsen CK, Cheng X (2008) Patterning chalcogenide glass by direct resist-free thermal nanoimprint. J Vac Sci Technol B 26:606–610

    Article  Google Scholar 

  • Tadmor R, Das R, Gulec S, Liu J, N’guessan HE, Shah M, Wasnik PS, Yadav SB (2017) Solid-liquid work of adhesion. Langmuir 33(15):3594–3600

    Article  Google Scholar 

  • Wei X, Chen F, Wang H, Zhou H, Ji Z, Lin T (2018) Efficient removal of aerosol oil-mists using superoleophobic filters. J Mater Chem A 6:871–877

    Article  Google Scholar 

  • Weyer F, Lismont M, Dreesen L, Nestler B, Vandewalle N (2015) Compound droplet manipulations on fiber arrays. Soft Matter 11:7086–7091

    Article  Google Scholar 

  • Weyer F, Duchesne A, Vandewalle N (2017) Switching behavior of droplets crossing nodes on a fiber network. Sci Rep 7:13309

    Article  Google Scholar 

  • Wurster S, Meyer J, Kolb HE, Kasper G (2015) Bubbling vs. blow-off—on the relevant mechanism(s) of drop entrainment from oil mist filter media. Sep Purif Technol 152:70–79

    Article  Google Scholar 

  • Yarin AL, Liu W, Reneker DH (2002) Motion of droplets along thin fibers with temperature gradient. J Appl Phys 91:4751–4760

    Article  Google Scholar 

  • Yildirim OE, Xu Q, Basaran OA (2005) Analysis of drop weight method. Phys Fluids 17:062107

    Article  MATH  Google Scholar 

Download references

Acknowledgements

HVT and HA gratefully acknowledge financial support from National Science Foundation CBET (1402655). The authors also thank Professor George Chase and Dr. Masoume Davoudi from University of Akron for recommending the use of FDTS for surface modification of the fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Vahedi Tafreshi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7979 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, H., Farhan, N.M. & Vahedi Tafreshi, H. Effects of fiber wettability and size on droplet detachment residue. Exp Fluids 59, 122 (2018). https://doi.org/10.1007/s00348-018-2579-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2579-z

Navigation