Skip to main content
Log in

Composition-independent mean temperature measurements in laminar diffusion flames using spectral lineshape information

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Temperature is an important thermochemical property in combusting flows that holds the key to uncovering pollutant formation, flame extinction, and heat release. In a practical combustion environment, the local composition is typically unknown, which hinders the effectiveness of many traditional non-intrusive thermometry techniques. This study aims to offset this limitation by developing a laser-based thermometry technique that does not require prior knowledge of the local composition. Two methods for obtaining temperature are demonstrated in this work, both of which make use of the spectral line broadening of an absorbing species (krypton) seeded into the flow. In the first method, the local Doppler broadening is extracted from an excitation scan to yield the corresponding temperature, while the second method utilizes compositional scaling information of the collisional broadening and collisional shift to determine the temperature. Both methods are demonstrated by measuring the radial temperature profile of a steady laminar CH4/N2 diffusion flame with an air co-flow. The accuracy of the temperature measurements obtained using both methods are evaluated using corresponding temperature profiles determined from computational simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barlow RS (2007) Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc Combust Inst 31:49–75

    Article  Google Scholar 

  • Barlow R, Wang G (2007) The correlation of differential diffusion and scalar dissipation in turbulent CH4/H2/N2 flame. In: Third European combustion meeting (ECM 2007)

  • Boguszko M, Elliott GS (2005) On the use of filtered Rayleigh scattering for measurements in compressible flows and thermal fields. Exp Fluids 38:33–49

    Article  Google Scholar 

  • Chan QN, Medwell PR, Alwahabi ZT, Dally BB, Nathan GJ (2011) Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames. Appl Phys B 104:189–198

    Article  Google Scholar 

  • Chang A, DiRosa M, Hanson R (1992) Temperature dependence of collision broadening and shift in the NO A-X(0, 0) band in the presence of argon and nitrogen. J Quant Spectrosc Radiat Transf 47(5):375–390

    Article  Google Scholar 

  • Dec JE, Keller JO (1986) High speed thermometry using two-line atomic fluorescence. Proc Combust Inst 21:1737–1745

    Article  Google Scholar 

  • DiRosa MD (1996) High-resolution line shape spectroscopy of transitions in the gamma bands of nitric oxide. ProQuest

  • DiRosa MD, Farrow RL (2001) Temperature-dependent collisional broadening and shift of Q-branch transitions in the BQX(0,0) band of CO perturbed by N2, CO2 and CO. J Quant Spectrosc Radiat Transf 68:363–375

    Article  Google Scholar 

  • DiRosa MD, Hanson RK (1994) Collision broadening and shift of NO Y(0, 0) absorption lines by O2 and H2O at high temperatures. J Quant Spectrosc Radiat Transf 52(5):515–529

    Article  Google Scholar 

  • Eckbreth AC (1996) Laser diagnostics for combustion temperature and species. Combustion Science & Technology, East Hartford

    Book  Google Scholar 

  • Edwards J, Roy C (1998) preconditioned multigrid methods for two-dimensional combustion calculations at all speeds. AIAA 36(2):185–192

    Article  MATH  Google Scholar 

  • Elliot GS, Glumac N, Carter CD (2001) Molecular filtered Rayleigh scattering applied to combustion. Meas Sci Technol 12:452–466

    Article  Google Scholar 

  • Epsey C, Dec JE, Litzinger TA, Santavicca DA (1997) Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet. Combust Flame 109:65–86

    Article  Google Scholar 

  • Fiechtner G, Gord J (2001) Absorption and the dimensionless overlap integral for two-photon excitation. J Quant Spectrosc Radiat Transfer 68:543–557

    Article  Google Scholar 

  • Forkey JN (1996) Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure. Thesis (PhD), Dissertation Abstracts International, vol 57-04, Section B, p 2692

  • Green D, Perry R (1999) Perry’s chemical engineer handbook. McGraw-Hill, New York City

    Google Scholar 

  • Gu D, Sun Z, Dally B, Medwell P, Alwahabi Z, Nathan G (2017) Simultaneous measurements of gas temperature, soot volume fraction and primary particle diameter in a sooting lifted turbulent ethylene/air non-premixed flame. Combust Flame 179:33–50

    Article  Google Scholar 

  • Hancock RD, Bertagnolli KE, Lucht RP (1997) Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner. Combust Flame 109:323–331

    Article  Google Scholar 

  • Hanson RK (1986) Combustion diagnostics: planar imaging techniques. In: Twenty first symposium on combustion

  • Hanson R, Falcone P (1978) Temperature measurement technique for high-temperature gases using a tunable diode laser. Appl Opt 17(6):2477–2480

    Article  Google Scholar 

  • Heinze J, Meier U, Behrendt T, Willert C, Geigle K, Lammel O, Luckerath R (2011) PLIF thermometry based on measurements of absolute concentrations of the OH radical. Z Phys Chem 225:1315–1341

    Article  Google Scholar 

  • Hsu AG, Narayanaswamy V, Clemens NT, Frank JH (2010) Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton. Proc Combust Inst 33:759–766

    Article  Google Scholar 

  • Hult J, Burns I, Kaminski C (2004) Measurements of the indium hyperfine structure in an atmospheric-pressure flame by use of diode-laser-induced fluorescence. Opt Lett 29(8):827–829

    Article  Google Scholar 

  • Kaiser SA, Long MB (2005) Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers. Proc Combust Inst 30:1555–1563

    Article  Google Scholar 

  • Kip BJ, Meier RJ (1990) Determination of the local temperature at a sample during Raman experiments using stokes and anti-stokes raman bands. Appl Spectrosc 44:707–711

    Article  Google Scholar 

  • Kohse-Hoinghaus K, Barlow RS, Alden M, Wolfrum J (2005) Combustion at the focus: laser diagnostics and control. Proc Combust Inst 30:89–123

    Article  Google Scholar 

  • Lam K-Y, Pickles J, Narayanaswamy V, Carter C, Kimmel R (2016) High-speed Schlieren and 10-Hz Kr PLIF for the new AFRL Mach-6 Ludwieg tube hypersonic wind tunnel. In: 55th AIAA aerospace science meeting, Grapevine, TX, 2016

  • Larsson A, Zettervall N, Hurtig T, Nilson E, Ehn A, Petersson P, Alden M, Larfeldt J, Fureby C (2017) Skeletal methane–air reaction mechanism for large-eddy simulation of turbulent microwave-assisted combustion. Energy Fuels 31(2):1904–1926

    Article  Google Scholar 

  • Linne MA (2002) Spectroscopic measurement, 1st edn. Academic Press, London

    Google Scholar 

  • Liu J, Rieker G, Jeffries J, Gruber M, Carter C, Mathur T, Hanson R (2005) Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl Opt 44(31):6701–6711

    Article  Google Scholar 

  • McManus T, Sutton J (2017) Quantitative 2D temperature imaging in turbulent nonpremixed jet flames using filtered Rayleigh scattering. In: AIAA 2017-1408, 2017

  • Medwell PR, Chan QN, Kalt PAM, Alwahabi ZT, Dally BB, Nathan GJ (2009) Development of temperature imaging using two-line atomic fluorescence. Appl Opt 48:1237–1248

    Article  Google Scholar 

  • Meier W, Barlow RS, Chen Y-L, Chen J-Y (2000) Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence–chemistry interaction. Combust Flame 123:326–343

    Article  Google Scholar 

  • Miles RB, Yalin AP, Tang Z, Zaidi SH, Forkey JN (2001) Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters. Meas Sci Technol 12:442–451

    Article  Google Scholar 

  • Miller J (1989) Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon. Phys Rev A 40(12):6969–6976

    Article  Google Scholar 

  • Narayanaswamy V, Burns R, Clemens NT (2011) Kr-PLIF for scalar imaging in supersonic flows. Opt Lett 36(21):4185–4187

    Article  Google Scholar 

  • Olivero J, Longbothum RL (1977) Empirical fits to the Voight line width: a breif review. J Quant Spectrosc Radiat Transfer 17:233–236

    Article  Google Scholar 

  • Parziale N, Smith M, Marineau E (2015) Krypton tagging velocimetry of an underexpanded jet. Appl Opt 15(16):5094–5101

    Article  Google Scholar 

  • Patton RA, Gabet KN, Jiang N, Lempert WR, Sutton JA (2012) Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering. Appl Phys B 108:377–392

    Article  Google Scholar 

  • Rabenstein F, Leipertz A (1997) Two-dimensional temperature determination in the exhaust region of a laminar flat-flame burner with linear Raman scattering. Appl Opt 36:6989–6996

    Article  Google Scholar 

  • Roy S, Kinnius P, Lucht R, Gord J (2008) Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy. Opt Commun 281:319–325

    Article  Google Scholar 

  • Sneep M, Ubachs W (2005) Direct measurement of the Rayleigh scattering cross section in various gases. J Quant Spectrosc Radiat Transfer 92:293–310

    Article  Google Scholar 

  • Stancik A, Brauns E (2008) A simple asymmetric lineshape for fitting infrared absorption spectra. Vib Spectrosc 47:66–69

    Article  Google Scholar 

  • Sutton J, Driscoll J (2004) Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications. Opt Lett 29(22):2620–2622

    Article  Google Scholar 

  • Thoben RG, Meier U, Meier W, Aigner M (2005) Measurements by two-line OH PLIF thermometry of a self-excited combustion instability in a gas turbine model combustor. Flow Turbul Combust 75:317–333

    Article  Google Scholar 

  • Thorne A, Litzen U, Johansson S (1999) Spectrophysics: principles and applications. Springer Science & Business Media, Berlin

    Google Scholar 

  • Vestin F, Bengtsson P-E (2009) Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame. Proc Combust Inst 32:847–854

    Article  Google Scholar 

  • Zelenak D, Sealy W, Narayanaswamy V (2016) Collisional Broadening of Kr (4p6 S01 5p[3/2]2) transition with combustion species as collision partners. J Quant Spectrosc Radiat Transfer 174:28–38

    Article  Google Scholar 

  • Zezek Y, Choi I, Uddi M, Adamovich IV, Lempert WR (2010) Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas. J Phys D Appl Phys 43:12401

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from NSF CBET Grant 1511216 and AFOSR Grant FA9550-16-1-0190 with Dr. Chiping Li as the Program Manager. The authors also acknowledge Dr. Jack Edwards for providing the computational temperature profiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Narayanaswamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenak, D., Narayanaswamy, V. Composition-independent mean temperature measurements in laminar diffusion flames using spectral lineshape information. Exp Fluids 58, 147 (2017). https://doi.org/10.1007/s00348-017-2430-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2430-y

Navigation