Skip to main content
Log in

Analysis of differential infrared thermography for boundary layer transition detection

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the differential infrared thermography (DIT) technique, a contactless method of measuring the unsteady movement of the boundary layer transition position on an unprepared surface. DIT has been shown to measure boundary layer transition positions which correlate well with those from other measurement methods. In this paper unsteady aerodynamics from a 2D URANS solution are used and the resulting wall temperatures computed. It is shown that the peak of the temperature difference signal correlates well with the boundary layer transition position, but that the start and end of boundary layer transition cannot be extracted. A small systematic time-lag cannot be reduced by using different surface materials, but the signal strength can be improved by reducing the heat capacity and heat transfer of the surface layer, for example by using a thin plastic coating. Reducing the image time separation used to produce the difference images reduces the time-lag and also the signal level, thus the optimum is when the signal to noise ratio is at the minimum which can be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

From Uenal and Grieb (2013)

Fig. 2

From Richter et al. (2016)

Fig. 3

From Raffel et al. (2015)

Fig. 4

From Raffel et al. (2015)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Instantaneous angle of attack (\(^\circ \))

\(\alpha _0\) :

Mean angle of attack (\(^\circ \))

\(\alpha _1\) :

Pitching amplitude (\(^\circ \))

\(a_d\) :

Thermal diffusivity (m\(^2\)/s)

c :

Airfoil chord length (m)

\(C_\mathrm{f}\) :

Skin friction coefficient

\(C_\mathrm{p}\) :

Pressure coefficient

\(\sigma C_\mathrm{p}\) :

Standard deviation in \(C_\mathrm{p}\)

C :

Specific heat capacity (J/kg/K)

\(\Delta T\) :

Temperature difference between two times (K)

\(\epsilon \) :

Emissivity

f :

Pitching frequency (Hz)

\(f_\mathrm{i}\) :

Image time separation (acquisition) frequency (Hz)

\(f_0\) :

Focal length (m)

\(f\times t\) :

Normalised period time

\(H_\mathrm{L}\) :

Lamp heat flux (W/m\(^2\))

\(k_\mathrm{v}\) :

Thermal conductivity vertically (W/m/K)

\(k_\mathrm{h}\) :

Thermal conductivity horizontally (W/m/K)

M :

Mach number

N :

Boundary value for the transition code

\(\dot{q}\) :

Heat flux (W)

\(\rho \) :

density (kg/m\(^3\))

Re :

Reynolds number

t :

Time (s)

T :

Wall temperature (K)

\(T_\mathrm{r}\) :

Flow recovery temperature (K)

\(\mathrm{{Tu}}\) :

Freestream turbulence level

v :

Local flow velocity (m/s)

x :

Coordinate in the flow direction (m)

y :

Coordinate in breadth (m)

z :

Coordinate in depth (vertical) (m)

References

  • Astarita T, Cardone G (2000) Thermofluidynamic analysis of the flow in a sharp 180 degrees turn channel. Exp Therm Fluid Sci 20(3–4):188–200

    Article  Google Scholar 

  • Bouchardy A-M, Durand G, Gauffre G (1983) Processing of infrared thermal images for aerodynamic research. Appl Digit Image Process 397:304–309

    Google Scholar 

  • Carlomagno GM, Cardone G (2010) Infrared thermography for convective heat transfer measurements. Exp Fluids 49(6):1187–1218

    Article  Google Scholar 

  • Døssing M (2008) High frequency microphone measurements for transition detection on airfoils. Risø-R-1645(EN)

  • Du Z, Selig MS (2000) The effect of rotation on the boundary layer of a wind turbine blade. Renew Energy 20(2):167–181

    Article  Google Scholar 

  • Eder C (2016) Analyse der Differenzinfrarotthermographie (Engl: Analysis of differential infrared thermography). Masters thesis, University of the Bundeswehr, Munich, August 2016

  • Gardner AD, Richter K (2015) Boundary layer transition determination for periodic and static flows using phase-averaged pressure data. Exp Fluids. doi:10.1007/s00348-015-1992-9

    Google Scholar 

  • Gardner AD, Wolf CC, Raffel M (2016) A new method of dynamic and static stall detection using infrared thermography. Exp Fluids 57(9):2016. doi:10.1007/s00348-016-2235-4

    Article  Google Scholar 

  • Gartenberg E, Roberts AS Jr (1992) Twenty-five years of aerodynamic research with infrared imaging. J Aircr 29(2):161–171

    Article  Google Scholar 

  • Heister CC (2013) Numerical investigation of laminar-turbulent transition mechanisms for helicopter rotors in forward flight. In: American helicopter society 69th annual forum, Phoenix, Arizona, May 21–23, 2013

  • Krumbein A, Krimmelbein N, Schrauf G (2009a) Automatic transition prediction in hybrid flow solver, part 1: methodology and sensitivities. J Aircr. doi:10.2514/1.39736

    Google Scholar 

  • Krumbein A, Krimmelbein N, Schrauf G (2009) Automatic transition prediction in hybrid flow solver, part 2: practical application. J Aircr. doi:10.2514/1.39738

    Google Scholar 

  • Langtry R, Gola J, Menter F (2006) Predicting 2D airfoil and 3D wind turbine rotor performance using a transition model for general CFD codes. In: 44th AIAA aerospace sciences meeting and exhibit, p 395

  • Lanzafame R, Mauro S, Messina M (2013) Wind turbine CFD modeling using a correlation-based transitional model. Renew Energy 52:31–39

    Article  Google Scholar 

  • Mack LM (1977) Transition prediction and linear stability theory. In: AGARD Conf. Proc. no 224, Paris, 1977 (also JPL Publication 77-15, 1977)

  • Nitsche W, Brunn A (2006) Strömungsmesstechnik (Engl. Flow measurement techniques). Springer, Berlin. ISBN: 978-3540209904

  • Quast A (1987) Detection of transition by infrared image technique. In: 12th international congress on instrumentation in aerospace simulation facilities (ICIASF 87), Williamsburg, VA, 22–25 June 1987, pp 125–134

  • Richards EJ, Burstall FH (1945) The “China Clay” method of indicating transition. ARC R&M, No. 2126, HM Stationery. Office 19:1945

  • Richter K, Le Pape A, Knopp T, Costes M, Gleize V, Gardner AD (2011) Improved two-dimensional dynamic stall prediction with structured and hybrid numerical methods. J Am Helicopter Soc. doi:10.4050/JAHS.56.042007

    Google Scholar 

  • Richter K, Koch S, Gardner AD, Mai H, Klein A, Rohardt C-H (2014) Experimental investigation of unsteady transition on a pitching rotor blade airfoil. J Am Helicopter Soc 59(1):2014. doi:10.4050/JAHS.59.012001

    Article  Google Scholar 

  • Richter K, Schülein S (2014) Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography. Exp Fluids. doi:10.1007/s00348-014-1755-z

    Google Scholar 

  • Richter K, Wolf CC, Gardner AD, Merz CB (2016) Detection of unsteady boundary layer transition using three experimental methods. In: 54th AIAA aerospace sciences meeting, San Diego (CA), USA, 4–8 January 2016, AIAA-2016-1072

  • Raffel M, de Gregorio F, de Groot K, Schneider O, Gibertini G, Seraudie A (2011) On the generation of a helicopter aerodynamic database. Aeronaut J 115(1164):103–112. doi:10.2514/1.J053235

    Article  Google Scholar 

  • Raffel M, Merz CB (2014) Differential infrared thermography for unsteady boundary-layer transition measurements. AIAA J 52(9):2090–2093. doi:10.2514/1.J053235

    Article  Google Scholar 

  • Raffel M, Merz CB, Schwermer T, Richter K (2015) Differential infrared thermography for boundary layer transition detection on pitching rotor blade models. Exp Fluids. doi:10.1007/s00348-015-1905-y

    Google Scholar 

  • Saric et al (1994) Progress in transition modelling. AGARD-R-793

  • Schrauf G (1998) COCO: a program to compute velocity and temperature profiles for local and nonlocal stability analysis of compressible, conical boundary layers with suction. Center of Applied Space Technology and Microgravity Technical Rept., Nov 1998

  • Schrauf G (2006) LILO 2.1 user’s guide and tutorial. Geza Schrauf Stability Computations Tech. Rept. 6 (originally issued Sept. 2004, modified for Ver. 2.1 July 2006)

  • Schülein E (2014) Optical method for skin-friction measurements on fast-rotating blades. Exp Fluids. doi:10.1007/s00348-014-1672-1

    Google Scholar 

  • Schultz DL, Jones TV (1973) Heat-transfer measurements in short-duration hypersonic facilities. AGARDograph 165

  • Schwamborn D, Gardner AD, von Geyr H, Krumbein A, Lüdeke H, Stürmer A (2008) Development of the TAU-code for aerospace applications. In: 50th NAL INCAST (international conference on aerospace science and technology), Bangalore, India, June 26–28, 2008

  • Simon B, Filius A, Tropea C, Grundmann S (2016) IR thermography for dynamic detection of laminar-turbulent transition. Exp Fluids. doi:10.1007/s00348-016-2178-9

    Google Scholar 

  • Spalart PR, Allmaras SR, (1992) A one-equation turbulence model for aerodynamic flows, AIAA 1992-0439. In: AIAA 30th aerospace sciences meeting and exhibit, Reno, NV, January 6–9, 1992

  • Thomann H, Frisk B (1967) Measurement of heat transfer with an infrared camera. Int J Heat Mass Transf 11:819–826

    Article  Google Scholar 

  • Uenal E, Grieb H (2013) stall and transition on elastic rotor blades T1.1 DSA-9A static validation of wind tunnel model. Ferchau engineering report, 2013

  • Velkoff HR, Blaser DA, Jones KM (1971) Boundary-layer discontinuity on a helicopter rotor blade in hovering. J Aircr 8(2):101–107. doi:10.2514/3.4423610.2514/3.45910

    Article  Google Scholar 

Download references

Acknowledgements

This work was done within the DLR projects FAST-Rescue and STELAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gardner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, A.D., Eder, C., Wolf, C.C. et al. Analysis of differential infrared thermography for boundary layer transition detection. Exp Fluids 58, 122 (2017). https://doi.org/10.1007/s00348-017-2405-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2405-z

Navigation