Skip to main content

Advertisement

Log in

Dynamic mode decomposition for estimating vortices and lee waves in a stratified wake

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Dynamic mode decomposition (DMD) is an analysis technique for extracting flow patterns and their dynamics from experimental or simulated velocity fields. Here, DMD is applied to experimental data in the vertical center-plane of wakes generated by a towed grid in a stably stratified background, at varying values of the dimensionless Froude and Reynolds Number. The primary goal was to identify dynamically important patterns and reveal the influence of stratification on their initiation and evolution. It is demonstrated that DMD captures lee wave and vortical modes with different length scales successfully. Further, one can construct a mode energy spectrum which shows a clear dependence on Froude Number, with energy transfer to larger scales in the near wake, as the initial shear-triggered Kelvin–Helmholtz roll-ups diffuse and pair with neighbors. Finally, this paper serves as a detailed example of the application of DMD to time-resolved particle imaging velocimetry data for a stratified flow. The results confirm its utility in objective identification of dynamics at different scales of complex fluid flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25(1):539–575

    Article  MathSciNet  Google Scholar 

  • Billant P (2010) Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1. General stability equations. J Fluid Mech 660:354–395

    Article  MATH  MathSciNet  Google Scholar 

  • Billant P, Chomaz JM (2000) Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J Fluid Mech 418:167–188

    Article  MATH  MathSciNet  Google Scholar 

  • Billant P, Deloncle A, Chomaz JM, Otheguy P (2010) Zigzag instability of vortex pairs in stratified and rotating fluids. Part 2. Analytical and numerical analyses. J Fluid Mech 660:396–429

    Article  MATH  MathSciNet  Google Scholar 

  • Bonnier M, Eiff O (2002) Experimental investigation of the collapse of a turbulent wake in a stably stratified fluid. Phys Fluids 14(2):791–801

    Article  MATH  Google Scholar 

  • Chen KK, Tu JH, Rowley CW (2012) Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J Nonlinear Sci 22(6):887–915

    Article  MATH  MathSciNet  Google Scholar 

  • Chomaz JM, Bonetton P, Hopfinger EJ (1993) The structure of the near wake of a sphere moving horizontally in a stratified fluid. J Fluid Mech 254:1–21

    Article  Google Scholar 

  • Diamessis PJ, Gurka R, Liberzon A (2010) Spatial characterization of vortical structures and internal waves in a stratified turbulent wake using proper orthogonal decomposition. Phys Fluids 22(086):601

    Google Scholar 

  • Diamessis PJ, Spedding GR, Domaradzki JA (2011) Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J Fluid Mech 671:52–95

    Article  MATH  MathSciNet  Google Scholar 

  • Gordeyev SV, Thomas FO (2000) Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J Fluid Mech 414:145–194

    Article  MATH  Google Scholar 

  • Gordeyev SV, Thomas FO (2002) Coherent structure in the turbulent planar jet. Part 2. Structural topology via POD eigenmode projection. J Fluid Mech 460:349–380

    Article  MATH  Google Scholar 

  • Gurka R, Liberzon A, Hetsroni G (2006) POD of vorticity fields: a method for spatial characterization of coherent structures. Int J Heat Fluid Flow 27(3):416–423

    Article  Google Scholar 

  • Hebert DA, de Bruyn Kops SM (2006) Predicting turbulence in flows with strong stable stratification. Phys Fluids 18(6):066602

  • Holmes P, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures, dynamical systems and symmetry, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Huang Z, Keffer JF (1996) Development of structure within the turbulent wake of a porous body. Part 1. The initial formation region. J Fluid Mech 329:103–115

    Article  Google Scholar 

  • Lawrence GA, Browand FK, Redekopp LG (1991) The stability of a sheared density interface. Phys Fluids 3(10):2360–2370

    Article  MATH  Google Scholar 

  • Lin Q, Lindberg WR, Boyer DL, Fernando HJS (1992) Stratified flow past a sphere. J Fluid Mech 240:315–354

    Article  Google Scholar 

  • Lumley JL (2007) Stochastic tools in turbulence. Courier Corporation

  • Meunier P, Diamessis PJ, Spedding GR (2006) Self-preservation in stratified momentum wakes. Phys Fluids 18:106601

    Article  MATH  MathSciNet  Google Scholar 

  • Orr TS, Domaradzki JA, Spedding GR, Constantinescu GS (2015) Numerical simulations of the near wake of a sphere moving in a steady, horizontal motion through a linearly stratified fluid at Re = 1000. Phys Fluids 27(3):035113

    Article  Google Scholar 

  • Riley JJ, de Bruyn Kops SM (2003) Dynamics of turbulence strongly influenced by buoyancy. Phys Fluids 15:2047–2059

    Article  MATH  MathSciNet  Google Scholar 

  • Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127

    Article  MATH  MathSciNet  Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MATH  MathSciNet  Google Scholar 

  • Schmid PJ (2011) Application of the dynamic mode decomposition to experimental data. Exp Fluids 50(4):1123–1130

    Article  Google Scholar 

  • Schmid PJ, Henningson DS (2001) Stability and transition in shear flows, applied mathematical sciences, vol 142. Springer, New York

    Book  MATH  Google Scholar 

  • Schmid PJ, Violato D, Scarano F (2012) Decomposition of time-resolved tomographic piv. Exp Fluids 52(6):1567–1579

    Article  Google Scholar 

  • Smyth WD (2003) Secondary Kelvin–Helmholtz instability in weakly stratified shear flow. J Fluid Mech 497:67–98

    Article  MATH  MathSciNet  Google Scholar 

  • Spedding GR (1997) The evolution of initially turbulent bluff-body wakes at high internal Froude number. J Fluid Mech 337:283–301

    Article  Google Scholar 

  • Spedding GR (2001) Anisotropy in turbulence profiles of stratified wakes. Phys Fluids 13(8):2361–2372

    Article  MATH  Google Scholar 

  • Spedding GR (2002) Vertical structure in stratified wakes with high initial Froude number. J Fluid Mech 454:71–112

    Article  MATH  MathSciNet  Google Scholar 

  • Spedding GR (2014) Wake signature detection. Ann Rev Fluid Mech 46:273–302

    Article  MATH  MathSciNet  Google Scholar 

  • Xiang X, Madison TJ, Sellappan P, Spedding GR (2015) The turbulent wake of a towed grid in a stratified fluid. J Fluid Mech 775:149–177

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We most gratefully acknowledge the support of ONR Contract N00014-14-1-0422, under the management of Dr. R. Joslin. Kevin K. Chen was supported by the Viterbi Postdoctoral Fellowship through the Viterbi School of Engineering at the University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Chen, K.K. & Spedding, G.R. Dynamic mode decomposition for estimating vortices and lee waves in a stratified wake. Exp Fluids 58, 56 (2017). https://doi.org/10.1007/s00348-017-2344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2344-8

Keywords

Navigation