Skip to main content
Log in

On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments

  • Letter
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Four commonly used refractive-index (RI)-matched Newtonian blood-analog fluids are reviewed, and different non-Newtonian blood-analogs, with RI of 1.372–1.495, are investigated. Sodium iodide (NaI), sodium thiocyanate (NaSCN) and potassium thiocyanate are used to adjust the RI of blood-analogs to that of test sections for minimizing optical distortions in particle image velocimetry data, and xanthan gum (XG) is added to the fluids to give them non-Newtonian properties (shear thinning and viscoelasticity). Our results support the general belief that adding NaI to Newtonian fluids matches the RI without changing the kinematic viscosity. However, in contrast to claims made in a few studies that did not measure rheology, our investigation revealed that adding NaI or NaSCN to XG-based non-Newtonian fluids changes the viscosity of the fluids considerably and reduces the shear-thinning property. Therefore, the RI of non-Newtonian blood-analog fluids with XG cannot be adjusted easily by varying the concentration of NaI or NaSCN and needs more careful rheological study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bai K, Katz J (2014) On the refractive index of sodium iodide solutions for index matching in PIV. Exp Fluids 55:1704. doi:10.1007/s00348-014-1704-x

    Article  Google Scholar 

  • Baldwin JT, Deutsch S, Geselowitz DB, Tarbell JM (1994) LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle. J Biomech Eng 116:190–200. doi:10.1115/1.2895719

    Article  Google Scholar 

  • Brookshier KA, Tarbell JM (1993) Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin. Biorheology 30:107–116

    Google Scholar 

  • Buchmann NA, Jermy MC (2007) Particle image velocimetry measurements of blood flow in a modeled carotid artery bifurcation BT. In: 16th Australasian fluid mechanics conference, 16AFMC, December 3, 2007–December 7, 2007. Proceedings of the 16th Australasian fluid mechanics conference 16AFMC, pp 60–67

  • Budwig R (1994) Refractive index matching methods for liquid flow investigations. Exp Fluids 17:350–355. doi:10.1007/BF01874416

    Article  Google Scholar 

  • Burgmann S, Große S, Schröder W, Roggenkamp J, Jansen S et al (2009) A refractive index-matched facility for fluid–structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance. Exp Fluids 47:865. doi:10.1007/s00348-009-0681-y

    Article  Google Scholar 

  • Geoghegan PH, Buchmann NA, Spence CJT, Moore S, Jermy M (2012) Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp Fluids 52:1331–1347. doi:10.1007/s00348-011-1258-0

    Article  Google Scholar 

  • Gijsen FJ, van de Vosse FN, Janssen JD (1999) The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech 32:601–608. doi:10.1016/S0021-9290(99)00015-9

    Article  Google Scholar 

  • Kalke BR, Mantini EL, Kaster RL, Carlson RG, Lillehei CW (1967) Hemodynamic features of a double-leaflet prosthetic heart valve of new design. ASAIO J 13:105–110

    Google Scholar 

  • Keshavarz-Motamed Z, Garcia J, Gaillard E, Maftoon N, Di Labbio G et al (2014) Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry. Exp Fluids 55:1696. doi:10.1007/s00348-014-1696-6

    Article  Google Scholar 

  • Ling SC, Atabek HB, Fry DL, Patel DJ, Janicki JS (1968) Application of heated-film velocity and shear probes to hemodynamic studies. Circ Res 23:789–801. doi:10.1161/01.RES.23.6.789

    Article  Google Scholar 

  • Long JA, Undar A, Manning KB, Deutsch S (2005) Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. ASAIO J 51:563–566. doi:10.1097/01.mat.0000180353.12963.f2

    Article  Google Scholar 

  • Mann DE, Tarbell JM (1990) Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology 27:711–733

    Google Scholar 

  • Marx TI, Baldwin BR, Kittle CF (1959) A cardiovascular simulator for the evaluation of prosthetic aortic valves. J Thorac Cardiovasc Surg 38:412–418

    Google Scholar 

  • Naiki T, Yanai Y, Hayabashi K (1995) Evaluation of high polymer solutions as blood analog fluid. J Jpn Soc Biorheol 9:84–89

    Google Scholar 

  • Quemada D (1978) Rheology of concentrated disperse systems II. A model for non-Newtonian shear viscosity in steady flows. Rheol Acta 17:632–642. doi:10.1007/BF01522036

    Article  Google Scholar 

  • Sousa PC, Pinho FT, Oliveira MSN, Alves MA (2011) Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics. doi:10.1063/1.3567888

    Google Scholar 

  • Thurston GB (1979) Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood. Biorheology 16:149–162

    Google Scholar 

  • Vetel J, Garon A, Pelletier D (2009) Lagrangian coherent structures in the human carotid artery bifurcation. Exp Fluids 46:1067–1079. doi:10.1007/S00348-009-0615-8

    Article  Google Scholar 

  • Vlastos G, Lerche D, Koch B, Samba O, Pohl M (1997) The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions. Rheol Acta 36:160–172

    Article  Google Scholar 

  • Walker AM, Johnston CR, Rival DE (2014) On the characterization of a non-newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis. Ann Biomed Eng 42:97–109. doi:10.1007/s10439-013-0893-4

    Article  Google Scholar 

  • Yousif MY, Holdsworth DW, Poepping TL (2011) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50:769–774. doi:10.1007/s00348-010-0958-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Plesniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najjari, M.R., Hinke, J.A., Bulusu, K.V. et al. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp Fluids 57, 96 (2016). https://doi.org/10.1007/s00348-016-2185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2185-x

Keywords

Navigation