Skip to main content
Log in

Investigation of combustion dynamics in a cavity-based combustor with high-speed laser diagnostics

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The dynamics of the flame/flow interaction produced in an optically accessible, premixed, and staged cavity-based combustor was investigated with high-speed particle image velocimetry (PIV) and OH-planar laser-induced fluorescence (OH-PLIF) . The combined PIV and OH-PLIF images were recorded at 2.5 kHz to assess stabilization mechanisms occurring between the cavity and the mainstream. Dynamic pressure and global heat-release rate fluctuations were complementary measured. Important characteristics were identified for two operating conditions, differing from the ratio of momentum J (taken between the mainstream and the cavity jet): a high ratio of momentum (\(J = 7.1\)) produced a “stable” flow, whereas a lower one (\(J = 2.8\)) displayed “unstable” conditions. Analysis of the “unstable” case revealed an intense flow instability, primarily due to premixed flow rate fluctuations inside the cavity. This effect is confirmed from a proper orthogonal decomposition analysis of PIV data, which illustrates the prominent role of large-scale flow oscillations in the whole combustor. Furthermore, the simultaneous analysis of flow velocities and gas state (either unburned or burned) displayed important fluctuations inside the shear layer, reducing effective flame-holding capabilities. By contrast, the increase in the ratio of momentum in the “stable” case reduces significantly the penetration of the cavity flow into the mainstream and consequently produces stable properties of the shear layer, being valuable to considerably improve flame stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Altay H, Speth R, Hudgins D, Ghoniem AF (2009) Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust Flame 156:1111–1125

    Article  Google Scholar 

  • Ben-Yakar A, Hanson R (2001) Cavity flame-holders for ignition and flame stabilization in scramjets: an overview. J Propuls Power 17(4):869–877

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley J (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Bohm B, Geyer D, Gregor M, Heeger C, Nauert A, Schneider C, Dreizler A (2013) Advanced laser diagnostics for understanding turbulent combustion and model validation. In: Flow and combustion in advanced gas turbine combustors, vol 1581. Springer, pp 93–160

  • Bohm B, Heeger C, Boxx I, Meier W, Dreizler A (2009) Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc Combust Inst 32(2):1647–1654

    Article  Google Scholar 

  • Bohm B, Heeger C, Gordon R, Dreizler A (2011) New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics. Flow Turbul Combust 86:313–341

    Article  MATH  Google Scholar 

  • Boxx I, Carter C, Stohr M, Meier W (2013) Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics. Exp Fluids 54(5):1–17

    Article  Google Scholar 

  • Boxx I, Stohr M, Carter C, Meier W (2010) Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust Flame 157(8):1510–1525

    Article  Google Scholar 

  • Brown G, Roshko A (1974) On the density effects and large structure in turbulent mixing layers. J Fluid Mech 64(04):775–816

    Article  Google Scholar 

  • Burguburu J, Cabot G, Renou B, Boukhalfa A, Cazalens M (2011) Effects of \(\text{h}_2\) enrichment in flame stability and pollutant emissions for a kerosene/air swirled flame with an aeronautical fuel injector. Proc Combust Inst 33:2927–2935

    Article  Google Scholar 

  • Burguburu J, Cabot G, Renou B, Boukhalfa A, Cazalens M (2012) Flame stabilization by hot products gases recirculation in a Trapped Vortex Combustor. In: Proceedings of the ASME, Copenhagen, Denmark, pp GT2012-68451

  • Candel S (2002) Combustion dynamics and control: progress and challenges. Proc Combust Inst 29(1):1–28

    Article  Google Scholar 

  • Cattafesta LN, Song Q, Williams DR, Rowley C, Alvi F (2008) Active control of flow-induced cavity oscillations. Prog Aerosp Sci 44:479–502

    Article  Google Scholar 

  • Cordier L, Bergmann M (2002) Proper orthogonal decomposition: an overview. In: Lecture series 2002–2004 on post-processing of experimental and numerical data. Von Karman Institute for Fluid dynamics

  • Correa S (1993) A review of \(\text{NO}_x\) formation under gas-turbine combustion conditions. Combust Sci Technol 87(1–6):329–362

    Article  Google Scholar 

  • Dimotakis P, Brown GL (1976) The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J Fluid Mech 78(3):535–560

    Article  Google Scholar 

  • Foucaut J, Carlier J, Stanislas M (2004) PIV optimization for the study of turbulent flow using spectral analysis. Meas Sci Technol 8:1427–1440

    Google Scholar 

  • Gharib M (1987) Response of the cavity shear layer oscillations to external forcing. AIAA J 25:43–47

    Article  Google Scholar 

  • Ghoniem A, Park S, Wachsman A, Annaswamy A, Wee D, Altay HM (2005) Mechanism of combustion dynamics in a backward-facing step stabilized premixed flame. Proc Combust Inst 30:1783–1790

    Article  Google Scholar 

  • Ho C, Huerre P (1984) Perturbed free shear layers. Ann Rev Fluid Mech 16(1):365–422

    Article  Google Scholar 

  • Johchi A, Naka Y, Shimura M, Tanahashi M, Miyauchi T (2015) Investigation on rapid consumption of fine scale unburned mixture islands in turbulent flame via 10 khz simultaneous CH-OH PLIF and SPIV. Proc Combust Inst 35(3): 3663–3673

  • Hsu K, Goss L, Trump D, Roquemore W (1998) Characteristics of a Trapped Vortex Combustor. J Propuls Power 14(1):57–65

    Article  Google Scholar 

  • Johchi A, Naka Y, Shimura M, Tanahashi M, Miyauchi T (2015) Investigation on rapid consumption of fine scale unburned mixture islands in turbulent flame via 10 khz simultaneous CH-OH PLIF and SPIV. Proc Combust Inst 35(3):3663–3673

    Article  Google Scholar 

  • Kaminski C, Hult J, Alden M (1999) High repetition rate planar laser-induced fluorescence of OH in a turbulent non-premixed flame. Appl Phys B 68:757–760

    Article  Google Scholar 

  • Koening K, Roshko A (1985) An experimental study of geometrical effects on the drag and flow field of two bluff bodies separated by a gap. J Fluid Mech 156:167–204

    Article  Google Scholar 

  • Kumar PE, Mishra D (2011a) Numerical modeling of an axisymmetric trapped vortex combustor. Int J Turbo Jet-Engines 28:41–52

    Google Scholar 

  • Kumar PE, Mishra D (2011b) Numerical simulation of cavity flow structure in an axisymmetric trapped vortex combustor. Aeros Sci Technol 21(1):16–23

    Article  Google Scholar 

  • Lieuwen T (2012) Unsteady combustor physics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Little B, Whipkey R (1979) Locked vortex afterbodies. J Aircr 16(5):296–302

    Article  Google Scholar 

  • Merlin C (2012) Simulation numérique de la combustion turbulente: Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité. Ph.D. thesis, INSA Rouen, France

  • Najm H, Paul P, Mueller C, Wyckoff P (1998) On the adequacy of certain experimental observables as measurements of flame burning rate. Combust Flame 113(3):312–332

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from grey-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  • Charbonnier P, Blanc-feraud L, Aubert G, Barlaud M (1994) Two deterministic half-quadratic regularization algorithms for computed imaging. In: Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, vol 2, IEEE, pp 168–172

  • Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Peterson B, Reuss D, Sick V (2014) On the ignition and flame development in a spray-guided direct-injection spark-ignition engine. Combust Flame 161(1):240–255

    Article  Google Scholar 

  • Pitz R, Daily J (1983) Combustion in a turbulent mixing layer formedat a rearward-facing step. AIAA J 21:1565–1570

    Article  Google Scholar 

  • Rockwell D, Knisely C (1979) The organized nature of flow impingement upon a corner. J Fluid Mech 93(03):413–432

    Article  Google Scholar 

  • Roquemore W, Shouse D, Burns D, Johnson A, Cooper C, Duncan B, Hsu K, Katta V, Sturgess G, Vihinen I (2001) Trapped Vortex Combustor concept for gas turbine engines. In: 39th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA, pp 2001–0489

  • Steinberg A, Boxx I, Arndt C, Franck J, Meier W (2011) Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF. Proc Combust Inst 33(1):1663–1672

    Article  Google Scholar 

  • Stohr M, Boxx I, Carter C, Meier W (2011) Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor. Proc Combust Inst 33(2):2953–2960

    Article  Google Scholar 

  • Straub D, Casleton K, Lewis R, Sidwell T, Maloney D, Richards G (2005) Assesment of Rich-burn, Quick-mix, Lean-burn Trapped Vortex Combustor for stationary gas turbines. J Eng Gas Turbines Power 127(1):36–41

    Article  Google Scholar 

  • Trunk P, Boxx I, Heeger C, Meier W, Bohm B, Dreizler A (2013) Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained khz repetition rates. Proc Combust Inst 34(2): 3565–3572

  • Sun M, Cui X, Wang H, Bychkov V (2015) Flame flashback in a supersonic combustor fueled by ethylene with cavity flameholder. J Jet Propuls 31(3):976–981

    Article  Google Scholar 

  • Taupin B, Cabot G, Martins G, Vauchelles D, Boukhalfa A (2007) Experimental study of stability, structure and CH* chemiluminescence in a pressurized lean premixed methane turbulent flame. Combust Sci Technol 179:117–136

    Article  Google Scholar 

  • Trunk P, Boxx I, Heeger C, Meier W, Bohm B, Dreizler A (2013) Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained khz repetition rates. Proc Combust Inst 34(2):3565–3572

    Article  Google Scholar 

  • Upanietks A, Driscoll J, Ceccio S (2002) Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proc Combust Inst 29:1897–1903

    Article  Google Scholar 

  • Weickert J (1997) A review of nonlinear diffusion filtering. In: Scale-space theory in computer vision. Springer, Berlin, Heidelberg, pp 1–28

  • Welch P (1967) The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  MathSciNet  Google Scholar 

  • Wulff A, Hourmouziadis J (1997) Technology review of aeroengine pollutant emissions. Aeros Sci Technol 8:557–572

    Article  Google Scholar 

  • Yuan Y, Zhang T, Yao W, Fan X (2015) Study on flame stabilization in a dual-mode combustor using optical measurements. J Propuls Power 31(6):1524–1531

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. ACP0-GA-2011-265586.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Xavier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, P., Vandel, A., Godard, G. et al. Investigation of combustion dynamics in a cavity-based combustor with high-speed laser diagnostics. Exp Fluids 57, 50 (2016). https://doi.org/10.1007/s00348-016-2135-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2135-7

Keywords

Navigation