Skip to main content
Log in

Shearlet-based detection of flame fronts

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Identifying and characterizing flame fronts is the most common task in the computer-assisted analysis of data obtained from imaging techniques such as planar laser-induced fluorescence (PLIF), laser Rayleigh scattering (LRS), or particle imaging velocimetry (PIV). We present Complex Shearlet-Based Ridge and Edge Measure (CoShREM), a novel edge and ridge (line) detection algorithm based on complex-valued wavelet-like analyzing functions—so-called complex shearlets—displaying several traits useful for the extraction of flame fronts. In addition to providing a unified approach to the detection of edges and ridges, our method inherently yields estimates of local tangent orientations and local curvatures. To examine the applicability for high-frequency recordings of combustion processes, the algorithm is applied to mock images distorted with varying degrees of noise and real-world PLIF images of both OH and CH radicals. Furthermore, we compare the performance of the newly proposed complex shearlet-based measure to well-established edge and ridge detection techniques such as the Canny edge detector, another shearlet-based edge detector, and the phase congruency measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. While the corresponding ground-truth is often created applying one of the edge detectors on the noiseless image, in this case, it was handmade by the authors to prevent favoring a particular method.

References

  • Abdou I, Pratt W (1979) Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE 67(5):753–763

    Article  Google Scholar 

  • Aldén M, Bood J, Li Z, Richter M (2011) Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc Combust Inst 33:69–97

    Article  Google Scholar 

  • Bayley AE, Hardalupas Y, Taylor AMKP (2012) Local curvature measurements of a lean, partially premixed swirl-stabilised flame. Exp Fluids 52:963–983

    Article  Google Scholar 

  • Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise \(C^2\) singularities. Commun Pure Appl Math 57(2):219–266

    Article  MathSciNet  MATH  Google Scholar 

  • Candès EJ, Guo F (2002) New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction. Signal Process 82(11):1519–1543

    Article  MATH  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  • Danielsson PE (1990) Machine vision for three-dimensional scenes. Academic Press, chap Generalized and Separable Sobel Operators

  • Daubechies I (1992) Ten lectures on wavelets, CBMS-NSF regional conference series in applied mathematics, vol 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  • Do MN, Vetterli M (2003) Contourlets. In: Welland GV (ed) Beyond wavelets, studies in computational mathematics, vol 10. Academic Press/Elsevier Science, San Diego, CA, pp 1–27

    Google Scholar 

  • Donoho DL (1999) Wedgelets: nearly minimax estimation of edges. Ann Stat 27(3):859–897

    Article  MathSciNet  MATH  Google Scholar 

  • Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15:11–15

    Article  MATH  Google Scholar 

  • Dyer MJ, Crosley DR (1982) Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt Lett 7:382–384

    Article  Google Scholar 

  • Fourguette DC, Zurn RM, Long MB (1986) Two-dimensional Rayleigh scattering thermometry in a turbulent nonpremixed methane-hydrogen flame. Combust Sci Technol 44:307–317

    Article  Google Scholar 

  • Frank J, Kaiser S, Long M (2005) Multiscalar imaging in partially premixed jet flames with argon dilution. Combust Flame 143:507–523

    Article  Google Scholar 

  • Grohs P, Keiper S, Kutyniok G, Schäfer M (2016) \(\alpha\)-Molecules. Appl Comput Harmon Anal. doi:10.1016/j.acha.2015.10.009

  • Guo K, Kutyniok G, Labate D (2006) Sparse multidimensional representations using anisotropic dilation und shear operators. In: Lai MJ, Chen G (eds) Wavelets und splines. Nashboro Press, Nashville, pp 189–201

    Google Scholar 

  • Haar A (1909) Zur Theorie der orthogonalen Funktionensysteme. Ph.D. thesis, University of Göttingen

  • Haar A (1910) Zur Theorie der orthogonalen Funktionensysteme. Math Ann 69(3):331–371

    Article  MathSciNet  MATH  Google Scholar 

  • Haq MZ, Sheppard CGW, Wooley R, Greenhalgh DA, Lockett RD (2002) Wrinkling and curvature of laminar and turbulent premixed flames. Combust Flame 131:1–15

    Article  Google Scholar 

  • Kiefer J, Li ZS, Zetterberg J, Bai XS, Alden M (2008) Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combust Flame 154:802–818

    Article  Google Scholar 

  • King EJ, Reisenhofer R, Kiefer J, Lim WQ, Li Z, Heygster G (2015) Shearlet-based edge detection: flame fronts and tidal flats. In: Tescher AG (ed) Applications of digital image processing XXXVIII, society of photo-optical instrumentation engineers (SPIE) conference series, vol 9599

  • Kingsbury N (1999) Image processing with complex wavelets. Philos Trans R Soc Lond 357(1760):2543–2560

    Article  MATH  Google Scholar 

  • Kovesi P (1999) Image features from phase congruency. Videre J Comput Vis Res 1(3):1–26

    Google Scholar 

  • Kovesi P (2000) Phase congruency: a low-level image invariant. Psychol Res 64:136–148

    Article  Google Scholar 

  • Kovesi PD (2015) MATLAB and Octave functions for computer vision and image processing. Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia. http://www.csse.uwa.edu.au/ pk/research/matlabfns/. Accessed 2015

  • Kutyniok G, Labate D (2009) Resolution of the wavefront set using continuous shearlets. Trans Am Math Soc 361(5):2719–2754

    Article  MathSciNet  MATH  Google Scholar 

  • Kutyniok G, Labate D, Lim WQ, Weiss G (2005) Sparse multidimensional representation using shearlets. In: Papadakis M, Laine, Unser (eds) Wavelets XI, society of photo-optical instrumentation engineers (SPIE) conference series, vol 5914, pp 254–262

  • Kutyniok G, Lemvig J, Lim WQ (2012) Optimally sparse approximations of 3D functions by compactly supported shearlet frames. SIAM J Math Anal 44(4):2962–3017

    Article  MathSciNet  MATH  Google Scholar 

  • Kutyniok G, Lim WQ, Reisenhofer R (2016) ShearLab 3D: faithful digital shearlet transforms based on compactly supported shearlets. ACM Trans Math Softw 42(1):5

    Article  MathSciNet  Google Scholar 

  • Lindeberg T (1998) Edge detection and ridge detection with automatic scale selection. Int J Comput Vis 30(2):117–154

    Article  Google Scholar 

  • Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theory 38(2):617–643

    Article  MathSciNet  MATH  Google Scholar 

  • Mallat S, Zhong S (1992) Characterization of signals from multiscale edges. IEEE Trans Pattern Anal Mach Intell 14(7):710–732

    Article  Google Scholar 

  • Malm H, Sparr G, Hult J, Kaminski CF (2000) Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy. J Opt Soc Am A 17:2148–2156

    Article  Google Scholar 

  • McMillin BK, Palmer JL, Hanson RK (1993) Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow. Appl Opt 32(36):7534–7545

    Article  Google Scholar 

  • Morrone MC, Owens RA (1987) Feature detection from local energy. Pattern Recogn Lett 6:303–313

    Article  Google Scholar 

  • Morrone MC, Ross J, Burr DC, Owens R (1986) Mach bands are phase dependent. Nature 324(6094):250–253

    Article  Google Scholar 

  • Negi P, Labate D (2012) 3-D discrete shearlet transform and video processing. Image Process IEEE Trans 21(6):2944–2954

    Article  MathSciNet  Google Scholar 

  • Pennec EL, Mallat S (2005) Bandelet image approximation and compression. SIAM J Multiscale Model Simul 4:2005

    Article  MathSciNet  MATH  Google Scholar 

  • Pfadler S, Beyrau F, Löffler M, Leipertz A (2006) Application of a beam homogenizer to planar laser diagnostics. Opt Express 14(22):10,171–10,180

    Article  Google Scholar 

  • Pfadler S, Beyrau F, Leipertz A (2007) Flame front detection using conditioned particle image velocimetry (CPIV). Opt Express 15:15,444–15,456

    Article  Google Scholar 

  • Prewitt JMS (1970) Object enhancement and extraction. In: Lipkin BS, Rosenfeld A (eds) Picture processing and psychopictorics, vol 75. Elsevier, Philadelphia

    Google Scholar 

  • Reisenhofer R (2014) The complex shearlet transform and applications to image quality assessment. Master’s thesis, Technische Universität Berlin

  • Roberts LG (1963) Machine perception of three-dimensional solids. Ph.D. thesis, Massachusetts Institute of Technology

  • Seitzman J, Hanson R, DeBarber P, Hess C (1994) Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows. Appl Opt 33(18):4000–4012

    Article  Google Scholar 

  • Selesnick IW (2001) Hilbert transform pairs of wavelet bases. IEEE Signal Process Lett 8(6):170–173

    Article  Google Scholar 

  • Selesnick IW, Abdelnour AF (2004) Symmetric wavelet tight frames with two generators. Appl Comput Harmon Anal 17(2):211–225

    Article  MathSciNet  MATH  Google Scholar 

  • Slabaugh CD, Pratt AC, Lucht RP (2015) Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions. Appl Phys B 118:109–130

    Article  Google Scholar 

  • Sobel I, Feldman G (1968) A \(3\times 3\) isotropic gradient operator for image processing. In: Presentation at the Stanford Artificial Intelligence Project

  • Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  • Storath M (2013) Amplitude and sign decompositions by complex wavelets-theory and applications to image analysis. Ph.D. thesis, Technische Universität München

  • Sweeney M, Hochgreb S (2009) Autonomous extraction of optimal flame fronts in OH planar laser-induced fluorescence images. Appl Opt 48:3866–3877

    Article  Google Scholar 

  • Thurow B, Jiang N, Lempert W (2013) Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements. Meas Sci Technol 24(012):002

    Google Scholar 

  • van Deemter JH, Buf JMHD (2000) Simultaneous detection of lines and edges using compound Gabor filters. Int J Pattern Recogn 14(6):757–777

    Article  Google Scholar 

  • Yi S, Labate D, Easley GR, Krim H (2009) A shearlet approach to edge analysis and detection. IEEE Trans Image Process 18(5):929–941

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kiefer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisenhofer, R., Kiefer, J. & King, E.J. Shearlet-based detection of flame fronts. Exp Fluids 57, 41 (2016). https://doi.org/10.1007/s00348-016-2128-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2128-6

Keywords

Navigation