Skip to main content
Log in

Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Flow behavior is investigated in the esophageal tract in an idealized experimental model of tracheoesophageal speech. The tracheoesophageal prosthesis is idealized as a first-order approximation using a straight, constant diameter tube. The flow is scaled according to Reynolds, Strouhal, and Euler numbers to ensure dynamic similarity. Flow pulsatility is produced by a driven orifice that approximates the kinematics of the pharyngoesophageal segment during tracheoesophageal speech. Particle image velocimetry data are acquired in three orthogonal planes as the flow exits the model prosthesis and enters the esophageal tract. Contrary to prior investigations performed in steady flow with the prosthesis oriented in-line with the flow direction, the fluid dynamics are shown to be highly unsteady, suggesting that the esophageal pressure field will be similarly complex. A large vortex ring is formed at the inception of each phonatory cycle, followed by the formation of a persistent jet. This vortex ring appears to remain throughout the entire cycle due to the continued production of vorticity resulting from entrainment between the prosthesis jet and the curved esophageal walls. Mean flow in the axial direction of the esophagus produces significant stretching of the vortex throughout the phonatory cycle. The stagnation point created by the jet impinging on the esophageal wall varies throughout the cycle due to fluctuations in the jet trajectory, which most likely arises due to flow separation within the model prosthesis. Applications to tracheoesophageal speech, including shortcomings of the model and proposed future plans, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aguiar-Ricz L, Ricz H, de Mello-Filho FV, Perdoná GC, Dantas RO (2010) Intraluminal esophageal pressures in speaking laryngectomees. Ann Otol Rhinol Laryngol 119:729–735

    Google Scholar 

  • Angermeier CB, Weinberg B (1981) Some aspects of fundamental frequency control by esophageal speakers. J Speech Lang Hear Res 24:85–91

    Article  Google Scholar 

  • Belforte G, Carello G, Miani C, Staffieri A (1998) Staffieri tracheo-oesophageal prosthesis for voice rehabilitation after laryngectomy: an evaluation of characteristics. Med Biol Eng Comput 36:754–760

    Article  Google Scholar 

  • Blom E, Singer M, Hamaker R (1986) A prospective study of tracheoesophageal speech. Arch Otolaryngol Head Neck Surg 112:440–447

    Article  Google Scholar 

  • Blom ED, Singer I, Hamaker RC (1982) Tracheostoma valve for postlaryngectomy voice rehabilitatoin. Ann Otol Rhinol Laryngol 91:576–578

    Article  Google Scholar 

  • Brok HAJ, Stroeve RJ, Copper MP, Schouwenburg PF (1998) The treatment of hypertonicity of the phayrngo-oesophageal segment after laryngectomy. Clin Otolaryngol 23:302–307

    Article  Google Scholar 

  • Chisari NE, Artana G, Sciamarella D (2011) Vortex dipolar structures in a rigid model of the larynx at flow onset. Exp Fluids 50:397–406

    Article  Google Scholar 

  • Clevens RA, Esclamado RM, Hartshorn DO, Lewis JS (1993) Voice rehabilitation after total laryngectomy and tracheoesophageal puncture using nonmuscular closure. Ann Otol Rhinol Laryngol 102:792–796

    Article  Google Scholar 

  • Cornaro C, Fleischer AS, Goldstein RJ (1999) Flow visualization of a round jet impinging on cylindrical surfaces. Exp Therm Fluid Sci 20:66–78

    Article  Google Scholar 

  • D’Alatri L, Bussu F, Scarano E, Paludetti G, Marchese MR (2012) Objective and subjective assessment of tracheoesophageal prosthesis voice outcome. J Voice 26:607–613

    Article  Google Scholar 

  • Debruyne F, Delaere P, Wouters J, Uwents P (1994) Acoustic analysis of tracheo-esophageal versus oesophageal speech. J Laryngol Otol 108:325–328

    Article  Google Scholar 

  • deVries MP, Hamburg MC, Schutte HK, Verkerke GJ, Veldman AEP (2003) Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier–Stokes equations and the finite element method. J Acoust Soc Am 113:2077–2083

    Article  Google Scholar 

  • Dworkin JP, Meleca RJ, Zormeier MM, Simpson ML, Garfiled I, Jacobs JR, Mathog RH (1998) Videostroboscopy of the pharyngoesophageal segment in total laryngectomees. Laryngoscope 108:1773–1781

    Article  Google Scholar 

  • Eadie T, Doyle P (2005) Quality of life in male tracheoesophageal (te) speakers. J Rehabil Res Dev 42:115–124

    Google Scholar 

  • Erath BD, Plesniak MW (2010a) An investigation of asymmetric flow features in a scaled-up model of the human vocal folds. Exp Fluids 49:131–146

    Article  Google Scholar 

  • Erath BD, Plesniak MW (2010b) Viscous flow features in scaled-up physical models of normal and pathological phonation. Int J Heat Fluid Flow 31:468–481

    Article  Google Scholar 

  • Erath BD, Zañartu M, Peterson SD, Plesniak MW (2011) Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech. Chaos 21(033):113

    Google Scholar 

  • Finizia C, Dotevall H, Lundstrum E, Lindstrom J (1999) Acoustic and perceptual evaluation of voice and speech quality: a study of patients with laryngeal cancer treated with laryngectomy vs irradiation. Arch Otol Head Neck Surg 125:157–163

    Article  Google Scholar 

  • Goyal RK, Blancani P, Phillips A, Spiro HM (1971) Mechanical properties of the esophageal wall. J Clin Investig 50:1456–1465

    Article  Google Scholar 

  • Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Hilgers FJM, Schouwenburg PF (1990) A new low-resistance, self retaining prosthesis (provox®) for voice rehabilitation after total laryngectomy. Laryngoscope 100:1203–1207

    Article  Google Scholar 

  • Hilgers FJM, Cornelissen MW, Balm AJM (1993) Aerodynamic characteristics of the provox low-resistance indwelling voice prosthesis. Eur Arch Otorhingol Suppl 250:375–378

    Google Scholar 

  • Hilgers FJM, Ackerstaff AH, Balm AJM, Tan IB, Aaronson NK, Persson JO (1997) Development and clinical evaluation of a second-generation voice prosthesis (provox®2) designed for anterograde and retrograde insertion. Acta Otolaryngol 117:889–896

    Article  Google Scholar 

  • Hilgers FJM, Ackerstaff AH, Jacobi I, Balm AJM, Tan IB, van den Brekel MWM (2010a) Propsective clinical phase ii study of two new indwelling voice prostheses (provox vega 22.5 and 20 fr) and a novel anterograde insertion device (provox smart inserter). Laryngoscope 120:1135–1143

    Google Scholar 

  • Hilgers FJM, Ackerstaff AH, van Rossum M, Jacobi I, Balm AJM, Tan IB, van den Brekel MWM (2010b) Clinical phase i/feasibility study of the next generation indwelling provox voice prosthesis (provox vega). Acta Otolaryngol 130:511–519

    Article  Google Scholar 

  • Hunt JCR, Wray A, Moin P (1988) Eddies, stream and convergence zones in turbulent flows. Center for turbulence research report CTR-S88

  • InHealth T (2015) Inhealth technologies—blom-singer® voice prostheses. https://www.inhealth.com/category_s/44.htm. Accessed 11 Nov 2015

  • Khosla SM, Murugappan S, Gutmark EJ (2008) What can vortices tell us about vocal fold vibration and voice production. Curr Opin Otolaryngol Head Neck Surg 16:183–187

    Article  Google Scholar 

  • Khosla SM, Murugappan S, Paniello R, Ying J, Gutmark EJ (2009) Role of vortices in voice production: normal versus asymmetric tension. Laryngoscope 119:216–221

    Article  Google Scholar 

  • Kniesburges S, Hesselmann C, Becker S, Schücker E, Döllinger M (2013) Influence of vortical flow structures on the glottal jet location in the supraglottal region. J Voice 27:531–544

    Article  Google Scholar 

  • Komatani Y, Greber I (1972) Experiments on turbulent jets in crossflow. AIAA J 10:1425–1429

    Article  Google Scholar 

  • Kotby MN, Hegazi MA, Gamal el Dien N, Nassar J (2009) Aerodynamics of the pseudo-glottis. Folia Phoniatr Logop 61:24–28

    Article  Google Scholar 

  • Lodermeyer A, Becker S, Döllinger M, Kniesburger S (2015) Phase-locked flow field analysis in a synthetic human larynx. Exp Fluids 56:1–13

    Article  Google Scholar 

  • Lorenz KJ (2015) Voice rehabilitation after total laryngectomy: a chronological review of medical history. HNO 63:663–680

    Article  Google Scholar 

  • Mahesh K (2013) The interactions of jets with crossflow. Ann Rev Fluid Mech 45:379–407

    Article  MathSciNet  MATH  Google Scholar 

  • Mahieu HF (1987) Laryngectomee rehabilitation using the groningen button voice prosthesis. Rev Laryngol 108:113–119

    Google Scholar 

  • Mahieu HF, Annyas AA, Schutte H, van der Jagt EJ (1987) Pharyngoesophageal myotomy for vocal rehabilitation of laryngectomees. Laryngoscope 97:451–458

    Article  Google Scholar 

  • Mittal R, Erath BD, Plesniak MW (2013) Fluid-dynamics of human phonation and speech. Ann Rev Fluid Mech 45:436–467

    Article  MathSciNet  MATH  Google Scholar 

  • Montgomery W (1996) Surgery of the upper respiratory system, 3rd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Moon JB, Weinberg B (1984) Airway resistance characteristics of voice button tracheoesophageal prostheses. J Speech Hear Disord 49:326–328

    Article  Google Scholar 

  • Moon JB, Weinberg B (1987) Aerodynamic and myoelastic contributions to tracheoeosphageal voice production. J Speech Hear Res 30:387–395

    Article  Google Scholar 

  • Moon JB, Sullivan J, Weinberg B (1983) Evaluations of blom-singer tracheoesophageal puncture prosthesis performance. J Speech Hear Res 26:459–464

    Article  Google Scholar 

  • Most T, Tobin Y, Mimran RC (2000) Acoustic and perceptual characteristics of esophageal and tracheoesophageal speech production. J Commun Disord 33:165–181

    Article  Google Scholar 

  • Natali AN, Carniel EL, Gregersen H (2009) Biomechanical behavior of oesophageal tissues: material and structural configuration, experimental data, and constituitive analysis. Med Eng Phys 31:1056–1062

    Article  Google Scholar 

  • Ng ML (2011) Aerodynamic characteristics associated with oesophageal and tracheoesophageal speech of cantonese. Int J Speech Lang Pathol 13:137–144

    Article  Google Scholar 

  • Oh CK, Melecca RJ, Simpson MS, Dworkin JP (2002) Fiberoptic examination of the pharyngoesophageal segment in tracheoesophageal speakers. Arch Otolaryngol Head Neck Surg 128:692–697

    Article  Google Scholar 

  • Orlandi P (1990) Vortex dipole rebound from a wall. Phys Rev A 2:1429–1436

    Google Scholar 

  • Panje WR (1981) Prosthetic voice rehabilitation following laryngectomy: the voice button. Ann Otol Rhinol Laryngol 90:116–120

    Article  Google Scholar 

  • Panje WR, VanDemark D, McCabe BF (1981) Voice button prosthesis rehabilitation of the laryngectomee. Additional notes. Ann Otol Rhinol Laryngol 90:503–505

    Article  Google Scholar 

  • Panton RL (1996) Incompressible flow. Wiley, New York

    MATH  Google Scholar 

  • Pawar P, Saved S, Kazi R, Jagade M (2008) Current status and future prospects in prosthetic voice rehabilitation following laryngectomy. J Cancer Res Ther 4:186–191

    Article  Google Scholar 

  • Perry A, Chesseman AD, McIvor J, Chalton RA (1987) British experience of surgical voice restoration techniques as a secondary procedure following total laryngectomy. J Laryngol Otol 101:55–63

    Article  Google Scholar 

  • Peterson SD, Plesniak MW (2004) Evolution of jets emanating from short holes into crossflow. J Fluid Mech 503:57–91

    Article  MATH  Google Scholar 

  • Reis N, Aguiar-Ricz L, Dantas RO, Ricz HMA (2013) Correlation of intraluminal esophageal pressure with dynamic extension of tracheoesophageal voice in total laryngectomees. Acta Cir Bras 28:391–396

    Article  Google Scholar 

  • Schwarz R, Hottner B, Dolinger M, Luegmair JEG, Schuster U, Lohscheller J, Gurlek E (2011) Substitute voice production: quantification of pe segment vibrations using a biomechanical model. IEE Trans Biomed Eng 58:2767–2776

    Article  Google Scholar 

  • Shipp T (1970) Emg of phayrngoesophageal musculature during alaryngeal voice production. J Speech Hear Res 13:184–192

    Article  Google Scholar 

  • Singer M, Blom ED (1980) An endoscopic technique for restoration of voice after total laryngectomy. Ann Otol Rhinol Laryngol 89:529–532

    Article  Google Scholar 

  • Singer M, Blom ED (1981) Selective myotomy for voice restoration after total laryngectomy. Arch Otolaryngol 107:670–673

    Article  Google Scholar 

  • Singer MI (2004) The development of successful tracheoesophageal voice restoration. Otolaryngol Clin N Am 37:507–517

    Article  Google Scholar 

  • Smith BE (1986) Aerodynamic characteristics of blom-singer low-pressure voice prostheses. Arch Otolaryngol Head Neck Surg 112:50–52

    Article  Google Scholar 

  • Stevens KN (1998) Acoustic phonetics. The MIT press, Cambridge

    Google Scholar 

  • Tack JW, Verkerke GJ, van der Houwen EB, Mahieu HF, Schutte HK (2006) Development of a double-membrane sound generator for application in a voice-producing element for laryngectomized patients. Ann Biomed Eng 34:1896–1906

    Article  Google Scholar 

  • Takeshita-Monaretti TK, Dantas RO, Ricz H, Aguiar-Ricz LN (2014) Correlation of maximum phonation time and vocal intensity with intraluminal esophageal and pharyngoesophageal pressure in total laryngectomees. Ann Otol Rhinol Laryngol 123:811–816

    Article  Google Scholar 

  • Terrell J, Fisher S, Wolf G (1998) Long-term quality of life after treatment of laryngeal cancer. The veterans affiars laryngeal cancer study group. Arch Otolaryngol Head Neck Surg 124:964–971

    Article  Google Scholar 

  • Thomson SL, Tack JW, Verkerke GJ (2007) A numerical study of the flow-induced vibration characteristics of a voice-producing element for laryngectomized patients. J Biomech 40:3598–3606

    Article  Google Scholar 

  • van As CJ, Hilger FJM, Verdonck-de Leeuw IM, Koopmans-van Beinum FJ (1998) Acoustical analysis and perceptual evaluation of tracheoesophageal prosthetic voice. J Voice 12:239–248

    Article  Google Scholar 

  • van der Torn M, de Vries MP, Festen JM, Verdonck-de Leeuw IM, Mehieu HF (2001) Alternate voice after laryngectomy using a sound producing voice prosthesis. Laryngoscope 111:336–346

    Article  Google Scholar 

  • Veenstra A, van den Hoogen FJ, Schutte HK, Nijdam HF, Manni JJ, Verkerke GJ (1997) Aerodynamic characteristics of the Nijdam voice prosthesis in relation to tracheo-esophageal wall thickness. Euro Arch Oto Rhino Laryngol 254:1–5

    Article  Google Scholar 

  • Weinberg B (1982) Airway resistance of the voice button. Arch Otolaryngol 108:498–500

    Article  Google Scholar 

  • Weinberg B, Moon JB (1986) Airway resistances of blom-singer® and panjeTM low pressure tracheoesophageal puncture prostheses. J Speech Hear Dis 51:169–172

    Article  Google Scholar 

  • Zhang C, Zhao W, Frankel SH, Mongeau L (2002) Computational aeroacoustics of phonation, part ii: effects of flow parameters and ventricular folds. J Acoust Soc Am 112:2147–2154

    Article  Google Scholar 

  • Zhao W, Zhang C, Frankel SH, Mongeau L (2002) Computational aeroacoustics of phonation, part i: computational methods and sound generation mechanisms. J Acoust Soc Am 112:2134–2146

    Article  Google Scholar 

  • Zheng Z, Mittal R, Bielamowicz S (2011) A computational study of asymmetric glottal jet deflection during phonation. J Acoust Soc Am 129:2133–2143

    Article  Google Scholar 

  • Zijlstra RJ, Mahieu HF, van Lith-Bijl JT, Schutte HK (1991) Aerodynamic properties of the low-resistance groningen button. Arch Otolaryngol Head Neck Surg 117:657–661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byron D. Erath.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erath, B.D., Hemsing, F.S. Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech. Exp Fluids 57, 34 (2016). https://doi.org/10.1007/s00348-015-2111-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2111-7

Keywords

Navigation