Skip to main content
Log in

Development of a Double-Membrane Sound Generator for Application in a Voice-Producing Element for Laryngectomized Patients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

For voice rehabilitation after total laryngectomy a shunt valve is usually placed in the tracheo-esophageal (TE) wall, thereby enabling the production of a TE voice. Some patients, however, are unable to produce a voice of sufficient quality. Furthermore, the TE voice is low pitched, which presents a problem especially for female laryngectomized patients. The voice quality after laryngectomy might be improved by introducing a voice-producing element (VPE) into the TE shunt valve. In this study a sound generator was developed that is suitable for application in such a VPE. This sound generator consists of two elastic membranes placed parallel inside a circular housing. A substitute voice source is created when the membranes start to vibrate via a constant flow of air passing between them. To determine the optimal membrane configuration for proper functioning under physiological conditions, up-scaled physical VPE models with different membrane geometries were evaluated using in vitro experimental tests. For certain membrane geometries the tests showed that a basic sound, containing multiple harmonics, could be successfully produced under physiological air pressure and airflow conditions. The fundamental frequency (60–95 Hz) and sound pressure level (57–78 dB, at 15 cm microphone distance) were regulated via changes in the driving pressure, thereby enabling the possibility of intonation in laryngectomized patients’ speech. The obtained frequency range is considered appropriate for producing a substitute voice source for female patients. The geometry considerations in this study can be used for the development of a true scale VPE that can be evaluated clinically, to eventually replace the voice after laryngectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. Blood G. W., 1984 Fundamental frequency and intensity measurements in laryngeal and alaryngeal speakers. J. Commun. Disord. 17(5):319–324

    Article  PubMed  CAS  Google Scholar 

  2. Cheesman A. D., J. Knight, J. McIvor, A. Perry. 1986. Tracheo-oesophageal ‘puncture speech’. An assessment technique for failed oesophageal speakers. J. Laryngol. Otol. 100(2):191–199

    PubMed  CAS  Google Scholar 

  3. Collier R. 1975. Physiological correlates of intonation patterns. J. Acoust. Soc. Am. 58(1):249–255

    Article  PubMed  CAS  Google Scholar 

  4. De Vries M. P., M. C. Hamburg, H. K. Schutte, G. J. Verkerke, A. E. P. Veldman. 2003. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier–Stokes equations and the finite element method. J. Acoust. Soc. Am. 113(4 Pt 1):2077–2083

    Article  PubMed  Google Scholar 

  5. De Vries M. P., A. Van der Plaats, M. Van der Torn, H. F. Mahieu, H. K. Schutte, G. J. Verkerke. 2000. Design and in vitro testing of a voice-producing element for laryngectomized patients. Int. J. Artif. Organs. 23(7):462–472

    PubMed  Google Scholar 

  6. Fee M. S., B. Shraiman, B. Pesaran, P. P. Mitra. 1998. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature 395(6697):67–71

    Article  PubMed  CAS  Google Scholar 

  7. Fletcher N.H. 1988. Bird song – a quantitative acoustic model. J. Theor. Biol. 135(4):455–481

    Article  Google Scholar 

  8. Fletcher N. H. 1993. Autonomous vibration of simple pressure-controlled valves in gas-flows. J. Acoust. Soc. Am. 93(4):2172–2180

    Article  Google Scholar 

  9. Fletcher N. H. 1979. Excitation mechanisms in woodwind and brass instruments. Acustica 43:65–72

    Google Scholar 

  10. Fletcher N. H., T. D. Rossing. 1998. The Physics of Musical Instruments. New York: Springer-Verlag

    Google Scholar 

  11. Greenewalt C. H. 1968. Bird Song: Acoustics and Physiology. Washington DC: Smithsonian institute

    Google Scholar 

  12. Hagen R., K. Berning, M. Korn, F. Schon. 1998. Stimmprothesen mit tonerzeugendem Metallzungen-Element–A experimentelle und erste klinische Ergebnisse. [Voice prostheses with sound-producing metal reed element–an experimental study and initial clinical results]. Laryngorhinootologie 77(6):312–321

    PubMed  CAS  Google Scholar 

  13. ‘t Hart J., R. Collier, and A. Cohen. A Perceptual Study of Intonation: An Experimental - Phonetic Approach to Speech Melody. Cambridge: Cambridge University Press, 1990, 212 pp

  14. Herrmann, I. F., S. Arca Recio, and J. Algaba. A new concept of surgical voice restoration after total laryngectomy: The female voice. In:The Second International Symposium on Laryngeal and Tracheal Reconstruction, edited by I. F. Herrmann, 1996, pp. 263–266

  15. Hilgers F. J., P. F. Schouwenburg. 1990. A new low-resistance, self-retaining prosthesis (Provox) for voice rehabilitation after total laryngectomy. Laryngoscope 100(11):1202–1207

    Article  PubMed  CAS  Google Scholar 

  16. Hirschberg A., R. W. A. Vandelaar, J. P. Marroumaurieres, A. P. J. Wijnands , H. J. Dane, S. G. Kruijswijk, A. J. M. Houtsma. 1990. A quasi-stationary model of air-flow in the reed channel of single-reed woodwind instruments. Acustica 70(2):146–154

    Google Scholar 

  17. Mahieu H. F., A. A. Annyas, H. K. Schutte, E. J. Vanderjagt. 1987. Pharyngoesophageal myotomy for vocal rehabilitation of laryngectomees. Laryngoscope 97(4):451–457

    Article  PubMed  CAS  Google Scholar 

  18. Mahieu, H. F. Voice and Speech Rehabilitation following Laryngectomy. Groningen: University of Groningen, PhD Thesis, 1988

  19. Nijdam H. F., A. A. Annyas, H. K. Schutte, H. F. Leever. 1982. A new prosthesis for voice rehabilitation after laryngectomy. Arch. Otorhinolaryngologie 237:27–33

    Article  Google Scholar 

  20. Panje W.R. 1981. Prosthetic vocal rehabilitation following laryngectomy. The Voice Button. Ann. Otol. Rhinol. Laryngol. 90:116–120

    PubMed  CAS  Google Scholar 

  21. Qi Y., B. Weinberg. 1995. Characteristics of voicing source waveforms produced by esophageal and tracheoesophageal speakers. J. Speech Hear Res. 38(3):536–548

    PubMed  CAS  Google Scholar 

  22. 22 Ratner, B.D., A.S. Hoffman, F.J. Schoen, and J.E. Lemons (eds.). Biomaterials Science: An Introduction to Materials in Medicine, Second Edition. Amsterdam: Elsevier Academic Press, 2004, 864 pp.

  23. Robbins J., H. B. Fisher, E. C. Blom, M. I. Singer. 1984. A comparative acoustic study of normal, esophageal, and tracheoesophageal speech production. J. Speech Hear Disord. 49(2):202–210

    PubMed  CAS  Google Scholar 

  24. Schutte, H. K. The Efficiency of Voice Production. Groningen: University of Groningen, PhD Thesis, 1980, 194 pp

  25. Singer M. I., E. D. Blom. 1980. An endoscopic technique for restoration of voice after laryngectomy. Ann. Otol. Rhinol. Laryngol. 89:529–533

    PubMed  CAS  Google Scholar 

  26. Šram, F. Diagnostik der Erkrankungen der Sprechorgane bei Blasinstrumentalisten. In: Das Instrumentalspiel. Prague: Verlag Doblinger, 1989, pp. 231–235

  27. Tack, J. W. Design of A Voice-producing Element. Enschede: University of Twente, Doctoral Thesis, 2003, 77 pp

  28. Van den Berg J. W. 1956. Physiology and physics of voice production. Acta Physiol. Pharmacol. Neerl. 5:40–55

    Google Scholar 

  29. Van der Torn M., M. P. de Vries, J. M. Festen, I. M. Verdonck-de Leeuw, H. F. Mahieu. 2001. Alternative voice after laryngectomy using a sound-producing voice prosthesis. Laryngoscope. 111(2):336–346

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study is part of the Eureka Newvoice 2614 project, financed by a grant from Senter (TSIN 1015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Verkerke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tack, J.W., Verkerke, G.J., van der Houwen, E.B. et al. Development of a Double-Membrane Sound Generator for Application in a Voice-Producing Element for Laryngectomized Patients. Ann Biomed Eng 34, 1896–1907 (2006). https://doi.org/10.1007/s10439-006-9196-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9196-3

Keywords

Navigation