Skip to main content
Log in

POD-based reduced-order hybrid simulation using the data-driven transfer function with time-resolved PTV feedback

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A data-driven system-identification technique is explored for proper orthogonal decomposition (POD)-based reduced-order unsteady simulation integrated with time-resolved particle-image-velocimetry/particle-tracking-velocimetry (PIV/PTV) feedback. Principal interaction pattern analysis is extended to calculate a nonlinear transfer function for the POD-mode evolution. Compared with the transfer function derived from the Galerkin projection of the Navier–Stokes equation, instability is suppressed in this approach by introducing a specific norm to be minimized. A feedback loop is implemented such that multiple POD modes obtained by the snapshot method can be stably tracked and assimilated into the PIV/PTV measurement over time. The proposed algorithm is demonstrated by solving a planar-jet problem at \(Re \approx 2{,}000\). Suitable feedback gain is analyzed, and the capability for data assimilation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adrian RJ, Moin P (1988) Stochastic estimation of organized turbulent structure: homogeneous shear flow. J Fluid Mech 190:531–559

    Article  MATH  Google Scholar 

  • Alvarez L, Castaño CA, Garcia M, Krissian K, Mazorra L, Salgado A, Sánchez J (2008) Variational second order flow estimation for PIV sequences. Exp Fluids 44(2):291–304

    Article  Google Scholar 

  • Barbagallo A, Sipp D, Schmid PJ (2009) Closed-loop control of an open cavity flow using reduced-order models. J Fluid Mech 641:1–50

    Article  MATH  Google Scholar 

  • Barone MF, Kalashnikova I, Segalman DJ, Thornquist HK (2009) Stable Galerkin reduced order models for linearized compressible flow. J Comput Phys 228(6):1932–1946

    Article  MATH  MathSciNet  Google Scholar 

  • Cordier L, Majd BAE, Favier J (2010) Calibration of POD reduced-order models using Tikhonov regularization. Int J Numer Methods Fluids 63(2):269–296

    MATH  Google Scholar 

  • Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40:80–97

    Article  Google Scholar 

  • Couplet M, Basdevant C, Sagaut P (2005) Calibrated reduced-order POD-Galerkin system for fluid flow modelling. J Comput Phys 207(1):192–220

  • Deville J, Ukeiley LS, Cordier L, Bonnet JP, Glauser MN (1999) Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition. J Fluid Mech 391:91–122

    Article  MathSciNet  Google Scholar 

  • Gordeyev SV, Thomas FO (2000) Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J Fluid Mech 414:145–194

    Article  MATH  Google Scholar 

  • Gresho PM (1991) Incompressible fluid dynamics: some fundamental formulation issues. Annu Rev Fluid Mech 23:413–453

    Article  MathSciNet  Google Scholar 

  • Guezennec YG (1989) Stochastic estimation of coherent structures in turbulent boundary layers. Phys Fluids 1(6):1054

    Article  MathSciNet  Google Scholar 

  • Gunes H, Rist U (2007) Spatial resolution enhancement/smoothing of stereo-particle-image-velocimetry data using proper-orthogonal-decomposition-based and Kriging interpolation methods. Phys Fluids 19(064):101

    Google Scholar 

  • Hasselmann K (1988) PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns. J Geophys Res 93(D9):11,015–11,021

    Article  Google Scholar 

  • Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Jung D, Gamard S, George WK (2004) Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high reynolds number. Part 1. The near-field region. J Fluid Mech 514:173–204

    Article  MATH  Google Scholar 

  • Kurtulus DF, Scarano F, David L (2007) Unsteady aerodynamic forces estimation on a square cylinder by TR-PIV. Exp Fluids 47(2):185–196

    Article  Google Scholar 

  • Kwasniok F (2004) Empirical low-order models of bartropic flow. J Atoms Sci 61(2):235–245

    Article  Google Scholar 

  • Liu X, Katz J (2006) Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp Fluids 41(2):227–240

    Article  Google Scholar 

  • Lumley JL (1970) Stochastic tool in turbulence. Academic Press, London

    Google Scholar 

  • Ma X, Karniadakis GE, Park H, Gharib M (2003) DPIV-driven flow simulation: a new computational paradigm. Proc R Soc Lond A 459:547–565

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno D, Krothapalli A, Alkislar MB, Lourenco LM (2004) Low-dimensional model of a supersonic rectangular jet. Phys Rev E 69(026):304

    Google Scholar 

  • Murray NE, Ukeiley LS (2003) Estimation of the flowfield from surface pressure measurements in an open cavity. AIAA J 41(5):969–972

    Article  Google Scholar 

  • Murray NE, Ukeiley LS (2007) An application of gappy POD. Exp Fluids 42(1):79–91

    Article  Google Scholar 

  • Nishino K, Kasagi K, Hirata M (1989) Three-dimensional particle tracking velocimetry based on automated digital image processing. Trans ASME J Fluids Eng 111:384–391

    Article  Google Scholar 

  • Noack BR, Afanasiev K, Morzynski M, Tadmor G, Thiele F (2003) A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J Fluid Mech 497:335–363

    Article  MATH  MathSciNet  Google Scholar 

  • Okuno T, Sugii Y, Nishio S (2000) Image measurement of flow field using physics-based dynamic model. Meas Sci Technol 11(6):667–676

    Article  Google Scholar 

  • Perret L, Collin E, Deville J (2006) Polynomial identification of POD based low-order dynamical system. J Turbul 7:1–15

    Article  MathSciNet  Google Scholar 

  • Rowley CW (2005) Model reduction for fluids, using balanced proper orthogonal decomposition. Int J Bifurc Chaos 15(3):997–1013

    Article  MATH  MathSciNet  Google Scholar 

  • Rowley CW, Colonius T, Murray RM (2004) Model reduction for compressible flows using POD and Galerkin projection. Physica D 189:115–129

    Article  MATH  MathSciNet  Google Scholar 

  • Ruhnau P, Stahl A, Schnörr C (2007) Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas Sci Technol 18(3):755–763

    Article  Google Scholar 

  • Samimy M, Debiasi M, Caraballo E, Serrani A, Yuan X, Little J, Myatt J (2007) Feedback control of subsonic cavity flows using reduced-order models. J Fluid Mech 579:315–346

    Article  MATH  MathSciNet  Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MATH  MathSciNet  Google Scholar 

  • Sciacchitano A, Dwight RP, Scarano F (2012) Navier–Stokes simulations in gappy PIV data. Exp Fluids 53(5):1421–1435

    Article  Google Scholar 

  • Sirisup S, Karniadakis GE (2004) A spectral viscosity method for correcting the long-term behavior of POD models. J Comput Phys 194:92–116

    Article  MATH  MathSciNet  Google Scholar 

  • Sirisup S, Karniadakis GE, Xiu D, Kevrekidis IG (2005) Equation-free/Galerkin-free POD-assisted computation of incompressible flows. J Comput Phys 207:568–587

    Article  MATH  MathSciNet  Google Scholar 

  • Sirisup S, Karniadakis GE, Yang Y, Rockwell D (2004) Wave-structure interaction: simulation driven by quantitative imaging. Proc R Soc Lond A 460:729–755

    Article  MATH  MathSciNet  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. II. Symmetries and transformations. III. Dynamics and scaling. Q Appl Math 45:561–590

    MATH  MathSciNet  Google Scholar 

  • Suzuki T (2011) \(L_1\) generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources. J Sound Vib 330(24):5835–5851

    Article  Google Scholar 

  • Suzuki T (2012) Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation. J Fluid Mech 709:249–288

    Article  MATH  MathSciNet  Google Scholar 

  • Suzuki T, Ji H, Yamamoto F (2009) Unsteady PTV velocity field past an airfoil solved with DNS: Part 1. Algorithm of hybrid simulation and hybrid velocity field at \({R}e \approx 10^3\). Exp Fluids 47(6):957–976

    Article  Google Scholar 

  • Suzuki T, Sanse A, Mizushima T, Yamamoto F (2009) Unsteady PTV velocity field past an airfoil solved with DNS: Part 2. Validation and application at Reynolds numbers up to Re ≲ 104. Exp Fluids 47(6):977–994

    Article  Google Scholar 

  • Suzuki T, Ji H, Yamamoto F (2010) Instability waves in a low-Reynolds-number planar jet investigated with hybrid simulation combining particle tracking velocimetry and direct numerical simulation. J Fluid Mech 655:344–379

    Article  MATH  Google Scholar 

  • Tinney CE, Glauser MN, Ukeiley LS (2008) Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition. J Fluid Mech 612:107–141

    Article  MATH  Google Scholar 

  • Tu JH, Griffin J, Hart A, Rowley CW, Cattafesta LN, Ukeiley LS (2013) Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp Fluids 54(2):1429

    Article  Google Scholar 

  • Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330

    Article  Google Scholar 

  • Yamagata T, Hayase T, Higuchi H (2008) Effect of feedback data rate in PIV measurement-integrated simulation. J Fluid Sci Technol 3(4):477–487

    Article  Google Scholar 

Download references

Acknowledgments

The author expresses deep appreciation to previous co-workers, Prof. F. Yamamoto and Mr. H. Ji in all respects. The author would also like to thank Dr. J. Huang and Mr. M. Koukawa for technical supports of the experiment as well as Dr. M. Barone for useful advice regarding stability of the POD–Galerkin projection approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Suzuki.

Appendix

Appendix

As an existing technique, we take a spectral viscosity method (Sirisup and Karniadakis 2004) to stabilize the reduced-order system and compare it with the other approaches. This technique is applicable to general nonlinear ODE systems and compatible with the system of our interest. On Eq. 11, we add an artificial viscous term as follows:

$$\begin{aligned} \frac{{\hbox{d}}a_k}{{\hbox{d}}t}&\approx \sum _{m = 1}^{N_{\mathrm{POD}}} L_{k m} a_{m} + \sum _{m = 1}^{N_{\mathrm{POD}}} \sum _{n = 1}^{N_{\mathrm{POD}}} Q_{k m n} a_{m} a_{n} \nonumber \\&\quad -\,\varepsilon \hat{q}_{k} \Biggl [ \left\langle \frac{\partial {\varvec{\phi }}_{k} }{\partial x}, \frac{\partial \mathbf{u}_0}{\partial x} \right\rangle + \left\langle \frac{\partial {\varvec{\phi }}_{k} }{\partial y}, \frac{\partial \mathbf{u}_0}{\partial y} \right\rangle \nonumber \\&\quad +\,\sum _{m = 1}^{N_{\mathrm{POD}}} a_{m} \left( \left\langle \frac{\partial {\varvec{\phi }}_{k} }{\partial x}, \frac{\partial {\varvec{\phi }}_{m} }{\partial x} \right\rangle + \left\langle \frac{\partial {\varvec{\phi }}_{k} }{\partial y}, \frac{\partial {\varvec{\phi }}_{m} }{\partial y} \right\rangle \right) \Biggr ], \end{aligned}$$
(26)

where the second derivative of the viscous operator is expanded with integration by parts, and the two-dimensional components are explicitly expressed above to clarify it (in addition, each \({\varvec{\phi }}_{k}\) and \(\mathbf{u}_0\) has the \(u\) and \(v\) components). Here, \(\hat{q}_{k}\) above is a POD coefficient of a viscosity kernel defined by

$$\begin{aligned} \hat{q}_{k} \equiv \left\{ \begin{array}{lll} 0, &{}\quad {\mathrm{if}}\quad \left| k \right| \le N_{\mathrm{C.O.}}, \\ \exp \left[ - \frac{ \left( k - N_{\mathrm{POD}} \right) ^2 }{ \left( k - N_{\mathrm{C.O.}} \right) ^2 } \right] ,&{}\quad {\mathrm{if}}\quad \left| k \right| > N_{\mathrm{C.O.}}, \end{array} \right.\end{aligned}$$
(27)

where the cut-off mode number is given by \(N_{\mathrm{C.O.}} = 7\) referring to Fig. 4. Thus, the artificial viscous term is selectively activated at higher POD modes, mainly through the auto-correlation (i.e., \(m = k\)) terms due to high-wavenumber disturbances.

The form above is taken from the original (Sirisup and Karniadakis 2004); however, there is an ambiguity regarding the subscript for the viscosity kernel \(\hat{q}\). Equation 26 applies \(\hat{q}\) to the extracted mode \(k\), but this creates a constant feedback term associated with the mean velocity (i.e., the second line), which overpowers the interaction term of the POD modes (i.e., the third line). Thus, this study applies the filter to the mode \(m\) and deactivates the mean velocity term (corresponding to \(m = 0\)) according to Eq. 27, leading to the viscous term of

$$\begin{aligned} - \varepsilon \sum _{m = 1}^{N_{\mathrm{POD}}} \hat{q}_{m} a_{m} \left( \left\langle \frac{\partial {\varvec{\phi }}_{k} }{\partial x}, \frac{\partial {\varvec{\phi }}_{m} }{\partial x} \right\rangle + \left\langle \frac{\partial {\varvec{\phi }}_{k} }{\partial y}, \frac{\partial {\varvec{\phi }}_{m} }{\partial y} \right\rangle \right) . \end{aligned}$$
(28)

The differentiation is similarly computed as explained at the end of Sect. 3.2.

Fig. 17
figure 17

Comparison of the pole distributions of the transfer matrix between the standard Galerkin projection and the spectral-viscosity method. Symbols: ○, Galerkin projection; *, spectral viscosity

The magnitude of \(\varepsilon \) is determined such that the largest growth rate of the eigenvalues (i.e., \(Re \left[ \lambda \right] \)) is minimized, resulting in \(\varepsilon \approx 1.01\). In Fig. 17, the pole distributions of the linear part in the transfer function are plotted before and after applying the viscous term for the optimal case. Although the system is still slightly unstable with the spectral viscosity, the magnitude of the growth rate now becomes comparable to that of the PIP estimation shown in Fig. 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T. POD-based reduced-order hybrid simulation using the data-driven transfer function with time-resolved PTV feedback. Exp Fluids 55, 1798 (2014). https://doi.org/10.1007/s00348-014-1798-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1798-1

Keywords

Navigation