Skip to main content
Log in

Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper presents an experimental study on water drop oblique impacts onto hydrophobic and superhydrophobic tilted surfaces, with the objective of understanding drop impact dynamics and the conditions for drop rebound on low wetting surfaces. Drop impact experiments were performed with millimetric water drops with Weber numbers in the range 25 < We < 585, using different surfaces with advancing contact angles 111° < θ A < 160° and receding contact angles 104° < θ R < 155°. The analysis of oblique impacts onto tilted surfaces led to the definition of six different impact regimes: deposition, rivulet, sliding, rolling, partial rebound, and rebound. For superhydrophobic surfaces, surface tilting generally enhanced drop rebound and shedding from the surface, either by reducing drop rebound time up to 40 % or by allowing drop rebound even when impalement occurred in the vicinity of the impact region. On hydrophobic surfaces, rebound was never observed for tilt angles higher than 45°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abuku M, Janssen H, Poesen J, Roels S (2009) Impact, absorption and evaporation of raindrops on building facades. Build Environ 44:113–124

    Article  Google Scholar 

  • Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A (2011) Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg Sci Technol 67:58–67

    Article  Google Scholar 

  • Antonini C, Amirfazli A, Marengo M (2012) Drop impact and wettability: from hydrophilic to superhydrophobic surfaces. Phys Fluids 24:102104

    Google Scholar 

  • Antonini C, Bernagozzi I, Jung S, Poulikakos D, Marengo M (2013a) Water drops dancing on ice: how sublimation leads to drop rebound. Phys Rev Lett 111:014501

    Article  Google Scholar 

  • Antonini C, Villa F, Bernagozzi I, Amirfazli A, Marengo M (2013b) Drop rebound after impact: the role of receding contact angle. Langmuir 29:16045–16050

    Article  Google Scholar 

  • Antonini C, Lee JB, Maitra T, Irvine S, Derome D, Tiwari MK, Carmeliet J, Poulikakos D (2014) Unraveling wetting transition through surface textures with X-rays: liquid meniscus penetration phenomena. Sci Rep 4:4055

    Article  Google Scholar 

  • Bartolo D, Bouamrirene F, Verneuil É, Buguin A, Silberzan P, Moulinet S (2006) Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74:299–305

    Article  Google Scholar 

  • Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Phil Trans R Soc A 367:1631–1672

    Article  Google Scholar 

  • Dewitte J, Berthoumieu P, Lavergne G (2011) Drop impact on a heated wall—influence of ambient pressure. Proceedings of 24th ILASS Europe conference, Estoril, Portugal, September 2011

  • Huanchen C, Tang T, Amirfazli A (2012) Fabrication of polymeric surfaces with similar contact angles but dissimilar contact angle hysteresis. Colloid Surf A 408:17–21

    Article  Google Scholar 

  • Li W, Amirfazli A (2005) A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J Colloid Interface Sci 292:195–201

    Article  Google Scholar 

  • Li N, Zhou Q, Chen X, Xu T, Hui S, Zhang D (2008) Liquid drop impact on solid surface with application to water drop erosion on turbine blades, part I: nonlinear wave model and solution of one-dimensional impact. Int J Mech Sci 50:1526–1542

    Article  MATH  Google Scholar 

  • Liu Y, Chen X, Xin JH (2009) Can superhydrophobic surfaces repel hot water? J Mater Chem 19:5602–5611

    Article  Google Scholar 

  • Maitra T, Tiwari MK, Antonini C, Schoch P, Jung S, Eberle P, Poulikakos D (2014) On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett 14(1):172–182

    Article  Google Scholar 

  • Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102:13

    Article  Google Scholar 

  • Mao T, Kuhn DCS, Tran H (1997) Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J 43:2169–2179

    Article  Google Scholar 

  • Marengo M, Antonini C, Roisman IV, Tropea C (2011) Drop collisions with simple and complex surfaces. Curr Opin Colloid Interface Sci 16:292–302

    Article  Google Scholar 

  • Okumura K, Chevy F, Richard D, Quéré D, Clanet C (2003) Water spring: a model for bouncing drops. Europhys Lett 62:237–243

    Google Scholar 

  • Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt HJ (2013) How superhydrophobicity breaks down. Proc Natl Acad Sci USA 110(9):3254–3258

    Article  Google Scholar 

  • Pasandideh-Fard M, Aziz SD, Chandra S, Mostaghimi J (2001) Cooling effectiveness of a water drop impinging on a hot surface. Int J Heat Fluid Fl 22:201–210

    Article  Google Scholar 

  • Quéré D (2005) Non-sticking drops. Rep Prog Phys 68:2495

    Article  Google Scholar 

  • Reyssat M, Pèrin A, Marty F, Chen Y, Quéré D (2006) Bouncing transitions in microtextured materials. Europhys Lett 74:306–312

    Article  Google Scholar 

  • Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417:811

    Article  Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2001) Outcomes from a drop impact on solid surfaces. Atomization Spray 11:155–165

    Google Scholar 

  • Rioboo R, Voué M, Vaillant A, De Coninck J (2008) Drop impact on porous superhydrophobic polymer surfaces. Langmuir 24:14074–14077

    Article  Google Scholar 

  • Rioboo R, Delattre B, Duvivier D, Vaillant A, De Coninck J (2012) Superhydrophobicity and liquid repellency of solutions on polypropylene. Adv Colloid Interface Sci 175:1–10

    Google Scholar 

  • Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9:3172–3187

    Article  Google Scholar 

  • Šikalo Š, Tropea C, Ganić EN (2005a) Dynamic wetting angle of a spreading droplet. Exp Therm Fluid Sci 29:795–802

    Article  Google Scholar 

  • Šikalo Š, Tropea C, Ganić EN (2005b) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286:661–669

    Article  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

  • Zhou Q, Li N, Chen X (2008) Liquid drop impact on solid surface with application to water drop erosion on turbine blades, part II: axisymmetric solution and erosion analysis. Int J Mech Sci 50:1543–1558

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Regione Lombardia for funding the project “Strumenti innovativi per il progetto di sistemi antighiaccio per l’aeronautica” (within the Framework Agreement) and Alenia Aermacchi for financial support. CA acknowledges funding by a Marie Curie Intra-European Fellowship, within the 7th European Community Framework Programme (ICE2, 301174). The authors also thank I. Bernagozzi and I. Malavasi (University of Bergamo), H. Chen (University of Alberta, Canada) and A. Amirfazli (University of York, Canada) for sample preparation. CA acknowledges Daniele Foresti (ETH Zurich) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Antonini or M. Marengo.

Additional information

C. Antonini and F. Villa have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonini, C., Villa, F. & Marengo, M. Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps. Exp Fluids 55, 1713 (2014). https://doi.org/10.1007/s00348-014-1713-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1713-9

Keywords

Navigation