Skip to main content
Log in

Experimental validation of a dynamic resonant wall shear stress sensor

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Experimental measurements are used to validate a numerical model of a dynamic resonant wall shear stress sensor. The numerical model consists of an unsteady two-dimensional boundary-layer model for the flow and a simple mechanical model for the sensor itself. The sensor’s sensitivity to wall shear stress is experimentally determined in a flat-plate boundary layer, and the results agree closely with those from the numerical simulations. Using the validated model, it is determined that the energy lost in each sensor oscillation due to the interaction between the sensor and fluid increases with increasing mean wall shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Allen JM (1976) Systematic study of error sources in supersonic skin-friction balance measurements. Technical report, Langley Research Center, Hampton

  • Allen JM (1977) Experimental study of error sources in skin-friction balance measurements. J Fluid Eng 99:197–205

    Google Scholar 

  • Amit KS (2005) A dynamic resonant wall shear stress sensor for fluids. Master’s thesis, University Of Wyoming

  • Armstrong WD, Singhal A, Naughton JW (2004) A dynamic resonant wall shear stress sensor. AIAA Paper 2004-2608

  • Barlian AA, Park SJ, Mukundan V, Pruitt BL (2007) Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors. Sens Actuators: A Phy 134:77–87

    Google Scholar 

  • Cebeci T (1978) An unsteady laminar boundary layer with separation and reattachment. AIAA J 16:1305–1306

    Article  MATH  Google Scholar 

  • Fourguette D, Modarress D, Wilson D, Koochesfahahani M (2003) An optical mems-based shear stress sensor for high reynolds number applications. American Institute of Aeronautics and Astronautics

  • Fukagata K, Kasagi N (2004) Suboptimal control for drag reduction via suppression of near-wall reynolds shear stress. Int J Heat Fluid Flow 25:341–350

    Article  Google Scholar 

  • Goldberg HD, Breuer KS, Schmidt MA (1994) A silicon wafer-bonding technology for microfabricated shear-stress sensors with backside contacts. In: Technical digest, solid-state sensor and actuator workshop, pp 111–115

  • Hammond EP, Bewley TR, Moin P (1998) Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys Fluids 10:2421–2423

    Article  Google Scholar 

  • Haritonidis JH (1989) The measurement of wall shear stress. In: Gad-el-Hak M (eds) Advances in fluid mechanics, Springer, Berlin, pp 229–261

    Google Scholar 

  • Horowitz S, Chen T, Chandrasekaran V, Tedjojuwono K, Nishida T, Cattafesta L, Sheplak M (2004) A micromachined geometric moiré interferometric floating element shear stress sensor. AIAA 2004-1042

  • Jiang F, Lee GB, Tai Y (2000) A flexible micromachine-based shear stress sensor array and its application to separation-point detection. Sens Actuators 79(2000):194–203

    Article  Google Scholar 

  • Johansson G (2005) Personal communication

  • Krai LD, Fasel HF (1991) Numerical investigation of three-dimensional active control of boundary layer transition. AIAA J 29:1407–1417

    Article  Google Scholar 

  • Lee C, Kim J (2002) Control of the viscous sublayer for drag reduction. Phys Fluids 4:2523–2529

    Article  Google Scholar 

  • Lee KH, Cortelezzi L, Kim J (2001) Application of reduced-order controller to turbulent flows for drag reduction. Phys Fluids 13:1321–1330

    Article  Google Scholar 

  • Lew J, Huang A, Ho CM (2004) Surface shear stress reduction with mems sensors/actuator in turbulent boundary layers. AIAA 2004-424

  • Li Y, Chandrasekharan V, Bertolucci B, Nishida T, Cattafesta L, Sheplak M (2008) A mems shear stress sensor for turbulence measurements. AIAA 2008-269

  • Naughton JW, Brown JL (1996) Surface interferometric skin-friction measurement technique. AIAA Paper 96-2183

  • Naughton JW, Sheplak M (2002) Modern developments in shear-stress measurement. Prog Aerosp Sci 38:515–570

    Article  Google Scholar 

  • Naughton JW, Viken S, Greenblatt D (2004) Wall shear stress measurements on the NASA hump model for CFD validation. In: Paper 2004-2607, 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland

  • Naughton JW, Viken S, Greenblatt D (2006) Skin friction measurements on the NASA hump model. AIAA J 44:1255–1265

    Article  Google Scholar 

  • Naughton JW, Liu T (2007) Photogrammetry in oil film interferometry. AIAA J 45(7):1620–1629

    Google Scholar 

  • Ng K, Shajii J, Schmidt MA (1992) A liquid shear-stress sensor using wafer-bonding technology. J MEMS 1:89–94

    Google Scholar 

  • Padmanabhan A (1997) Silicon micromachined sensors and sensor arrays for shear stress measurements in aerodynamic flows. PhD thesis, Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge

  • Plesniak WM, Peterson DS (2004) Wall shear stress measurements for conventional applications and biomedical flows. In: AIAA 2004-2301

  • Podin B, Lumley J (1998) Reconstructing the flow in the wall region from wall sensors. Phys Fluids 10:1182–1190

    Article  MathSciNet  Google Scholar 

  • Rathnasingham R, Breuer KS (1997) System identification and control of a turbulent boundary layer. Phys Fluids 9:1867–1869

    Article  Google Scholar 

  • Rumsey CL, Gatski TB (2003) Summary of easm turbulence models in cfl3d with validation test cases. Tech. rep., Langley Research Center, Hampton

  • Rumsey CL, Spalart PR (2008) Turbulence model behavior in low reynolds number regions of aerodynamic flowfields. In: AIAA 2008-4403

  • Schetz JA (2004) Direct measurement of skin friction in complex flows using movable wall elements. In: AIAA 2004-2112

  • Schiffer M, Obermeier E (2006) Aeromems surface fence for wall shear stress measurements in turbulent flows. In: AIAA 2006-645

  • Schmidt MA, Howe RT, Senturia SD, Haritonidis JH (1988) Design and calibration of a microfabricated floating-element shear-stress sensor. Trans Electron Devices ED-35:750–757

    Google Scholar 

  • Sheplak M, Padmanabhan A, Schmidt MA, Breuer KS (2001) Dynamic calibration of a shear stress sensor using stokes-layer excitation. AIAA J 39:819–823

    Article  Google Scholar 

  • Sheplak M, Chandrasekaran V, Cain A, Nishida T, Cattafesta L (2002) Characterization of a micromachined thermal shear stress sensor. AIAA J 40(6):1099–1104

    Article  Google Scholar 

  • Sheplak M, Cattafesta L, Nishida T (2004) Mems shear stress sensors: Promise and progress. In: AIAA 2004-2606

  • Tseng FG, Lin CJ (2003) Polymer mems-based fabry-perot shear stress sensor. IEEE SENSORS J 3(6):812–817

    Google Scholar 

  • Tyler C, Fonov SD (2004) Comparison of computationally predicted and experimentally measured skin friction. In: AIAA 2004-2304

  • Winter KG (1977) An outline of the techniques available for the measurement of skin friction in turbulent boundary layers. Progr Aerosp Sci 18:1–57

    Article  Google Scholar 

  • Zhang X, Naughton JW, Armstrong WD, Lindberg W (2004) Numerical model of a dynamic resonant shear stress sensor. In: AIAA Paper 2004-2395

  • Zhang X, Naughton JW, Lindberg W (2008) Working principle simulations of a dynamic resonant wall shear stress sensor concept. Sens J 8:2707–2721

    Article  Google Scholar 

  • Zhang X, Naughton JW, Lindberg W (2009) 2-d and 3-d numerical modelling of a dynamic resonant shear stress sensor. Comput Fluids 38:340–346

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the invaluable contributions to the development of this sensor by the second author William D. Armstrong who passed away in September 2006. He will be missed. This work supported in part by NSF under grant CTS-0500502 monitored by Michael Plesniak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Armstrong, W.D., Lindberg, W.R. et al. Experimental validation of a dynamic resonant wall shear stress sensor. Exp Fluids 53, 1107–1121 (2012). https://doi.org/10.1007/s00348-012-1347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1347-8

Keywords

Navigation