Skip to main content
Log in

Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR‐PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alekseenko SV, Markovich DM, Semenov VI (1997) Effect of external disturbances on the impinging jet structure. In: Fourth world conference on experimental heat transfer, fluid mech. and thermodynamics, Brussels, Belgium, June 26, pp 1815–1822

  • Alekseenko S, Bilsky A, Heinz O, Ilyushin B, Markovich D, Vasechkin V (2002) Fine structure of the impinging turbulent jet. In: Fifth international symposium on engineering turbulence modeling and experiments

  • Bouainouche M, Bourabaa N, Desmet B (1997) Numerical study of the wall shear stress produced by the impingement of a plane turbulent jet on a plate. Intl J Numer Meth Heat Fluid Flow 7:548–564

    Article  MATH  Google Scholar 

  • Bradshaw P, Love EM (1961) The normal impingement of a circular air jet over a flat surface. ARC R&M 3205

  • Cerra AW, Smith CR (1983) Experimental observations of vortex ring interaction adjacent to a surface, Report No. FM-4, Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA

  • Clauser FH (1956) The Turbulent boundary layer. Adv Appl Mech 4:1–51

  • Downs SJ, James EH (1987) Jet impingement heat transfer—a literature survey. ASME Paper no 87‐HT‐35

  • Deshpande MD, Vaishnav RN (1982) Submerged laminar jet impingement on a plane. J Fluid Mech 114:213–236

    Article  MATH  Google Scholar 

  • Didden N, Ho C-M (1985) Unsteady separation in a boundary layer produced by an impinging jet. J Fluid Mech 160:235–256

    Article  Google Scholar 

  • Doligalski TL (1994) Vortex interactions with walls. A Rev Fluid Mec 26:573–616

    Article  MathSciNet  Google Scholar 

  • El Hassan M, Meslem A (2010) Time-resolved stereoscopic PIV investigation of the entrainment in the near field of circular and daisy-shaped orifice jets. Phys Fluids 22:035107

    Article  Google Scholar 

  • El Hassan M, Meslem A, Abed-Meraim K (2011) Experimental investigation of the flow in the near-field of a cross-shaped orifice jet. Phys Fluids 23:045101

    Article  Google Scholar 

  • Fabris D, Liepmann D, Marcus D (1996) Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys. Fluids 8:2640

    Article  Google Scholar 

  • Fourguette D, Modaress D, Taugwalder F, Wilson D, Koochesfahani M, Gharib M (2001) Miniature and MOEMS flows sensors. In: 31st AIAA fluid dynamics conference and exhibition, Anaheim, CA

  • Gharib D, Modaress M, Fourguette D, Wilson D (2002) Optical microsensors for fluid flow diagnostics. In: 40th AIAA aerospace sciences meeting and exhibition, Reno, NV

  • Hall JW, Ewing D (2006) On the dynamics of the large-scale structures in round impinging jets. J Fluid Mech 555:439–458

    Article  MATH  Google Scholar 

  • Hadziabdic M, Hanjalic K (2008) vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260

    Article  MATH  Google Scholar 

  • Harvey JK, Perry FJ (1971) Flow field produced by trailing vortices in the vicinity of the ground. AIAA J 9:1659–1660

    Article  Google Scholar 

  • Ho C-M, Nosseir NS (1981) Dynamics of an impinging jet. Part 1. The feedback phenomenon. J Fluid Mech 105:119–142

    Article  Google Scholar 

  • Hrycak P (1981) Heat transfer from impinging jets a literature review. Report AFWAL-TR-81-3054, Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Air Force System Command, Wright- Patterson AFB, Ohio 45433

  • Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13(2):106–115

    Article  Google Scholar 

  • Janetzke T, Nitsche W (2009) Time resolved investigations on flow field and quasi wall shear stress of an impingement configuration with pulsating jets by means of high speed PIV and a surface hot wire array. Int J Heat Fluid Flow 30:877–885

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Kataoka K, Mizushina T (1974) Local enhancement of the rate of heat-transfer in an impinging round jet by free-stream turbulence. In: Proceedings of 5th international heat transfer conference, Tokyo 305

  • Kristiawan M, Meslem A, Nastace I, Sobolik V (2012) Wall shear rate and mass transfer in impinging jet. Comparison of circular convergent and cross shaped orifice nozzles. Int J Heat Mass Transf 55:282–293

    Google Scholar 

  • Landreth CC, Adrian RJ (1990) Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence. Exp Fluids 9:74–84

    Article  Google Scholar 

  • Lee J, Lee S-J (2000) The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. Int J Heat Mass Transf 43:3497–3509

    Article  Google Scholar 

  • Liang S, Falco RE, Bartholomew RW (1983) Vortex ring moving wall interactions: experiments and numerical modelling. Bull Am Phys Soc 28:1397

    Google Scholar 

  • Looney MK, Walsh JJ (1984) Mean-flow and turbulent characteristics of free and impinging jet flows. J Fluid Mech 147:397–429

    Article  MATH  Google Scholar 

  • Loureiro JBR, Freire APS (2009) Impingement of a confined axisymmetric jet on smooth and rough flat plates: near wall behaviour. Turbul Heat Mass Transf. doi:10.1615/ICHMT

  • Martin H (1977) Heat and mass transfer between impinging gas jets and solid surfaces. Adv Heat transf 13:1–60

    Google Scholar 

  • Naguib AM, Koochesfahani MM (2004) On wall-pressure sources associated with the unsteady separation in a vortex-ring wall interaction. Phys Fluids 16(7):2613–2622

    Google Scholar 

  • Nishino N, Samada M, Kasuya K, Torii K (1996) Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow. Int J Heat Fluid Flow 17:193–201

    Google Scholar 

  • Olsson M, Fuchs L (1998) Large eddy simulations of a forced semiconfined circular impinging jet. Phys Fluids 10(2):476–486

    Article  Google Scholar 

  • Orlandi P, Verzicco R (1993) Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J Fluid Mech 256:615–646

    Article  MATH  Google Scholar 

  • Phares DJ, Holt JK, Smedley GT, Flagan RC (2000a) Method for characterization of adhesion properties of trace explosives in fingerprints and fingerprint simulations. J Forensic Sci 45:762–772

    Google Scholar 

  • Phares DJ, Smedley GT, Flagan RC (2000b) The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech 418:351–375

    Article  MATH  Google Scholar 

  • Popiel CO, Trass O (1991) Visualization of a free and impinging round jet. Expl Thermal Fluid Sci 4:253–264

    Article  Google Scholar 

  • Poreh M, Tsuei YG, Cermak JE (1967) Investigation of a turbulent radial wall jet. J Appl Mech 34:457–463

    Article  Google Scholar 

  • Prasad A, Adrian R, Landreth C, Offutt P (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13:105–116

    Article  Google Scholar 

  • Rehimi F, Aloui F, Ben Nasrallah S, Doubliez L, Legrand J (2006) Inverse method for electrodiffusional diagnostics of flows. Int J Heat Mass Transf 49:1242–1254

    Article  MATH  Google Scholar 

  • Reiss LP, Hanratty TJ (1962) Measurement of instantaneous rates of mass transfer to a small sink on a wall. AICHE J 8:245–247

    Google Scholar 

  • Rubel A (1980) Computations of jet impingement on a flat surface. AIAA J 18:168–175

    Article  MATH  Google Scholar 

  • Rubel A (1983) Inviscid axisymmetric jet impingement with recirculating stagnation regions. AIAA J 21:351–357

    Article  Google Scholar 

  • Sakakibara J, Hishida K, Maeda M (1997) Vortex structure and heat transfer in the stagnation region of an impinging plane jet. Int J Heat Mass Transf 40(13):3163–3176

    Article  Google Scholar 

  • Sakakibara J, Hishida K, Phillips RC (2001) On the vertical structure in a plane impinging jet. J Fluid Mech 434:273–300

    Article  MATH  Google Scholar 

  • Scholtz MT, Trass O (1970) Mass transfer in a nonuniform impinging jet. AICHE J 16:82–90

    Article  Google Scholar 

  • Smedley GT, Phares DJ, Flagan RC (1999) Entrainment of fine particles from surfaces by impinging shock waves. Exp Fluids 26(1/2):116–125

    Article  Google Scholar 

  • Sobolik V, Wein O, Cermak J (1987) Simultaneous measurement of film thickness and wall shear stress in wavy-film flow of non-Newtonian fluids. Collect Czech Chem Commun 52:913

    Article  Google Scholar 

  • Strand T (1964) On the theory of normal ground impingement of axisymmetric jets in inviscid incompressible flow. AIAA Paper 64–424

  • Vejrazka J, Tihon J, Marty Ph., Sobolik V (2005) Effect of an external excitation on the flow structure in a circular impinging jet. Phys Fluids 17:105102

  • Walker JDA, Smith CR, Cerra AW, Doligalski TL (1987) The impact of a vortex ring on a wall. J Fluid Mech 181:99–140

    Article  Google Scholar 

  • Westerweel J (1993) Digital particle image velocimetry. Delft University Press, Delft

    Google Scholar 

  • Yapici S, Kuslu S, Ozmentin C, Ersahan H, Pekdemir T (1999) Surface shear stress for a submerged jet impingement using electrochemical technique. J Appl Electrochem 29:185–190

    Article  Google Scholar 

  • Yokobori S, Kasagi N, Hirata M (1983) Transport phenomena at the stagnation region of a two-dimensional impinging jet. Trans JSME Ser B 49(441):1029–1039

    Article  Google Scholar 

  • Zhe J, Modi V (2001) Near wall measurements for a turbulent impinging slot jet. J Fluid Eng 123(1):112–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhammad El Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Hassan, M., Assoum, H.H., Sobolik, V. et al. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp Fluids 52, 1475–1489 (2012). https://doi.org/10.1007/s00348-012-1269-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1269-5

Keywords

Navigation