Skip to main content
Log in

Vortex dynamics in a normally impinging planar jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The flow development of a jet issued from a high-aspect ratio slot nozzle impinging on a flat plate is investigated experimentally. Time-resolved, two-component particle image velocimetry is used to characterize the flow for Reynolds numbers based on slot width and streamwise jet centerline velocity of 3000 and 6000, and impingement height ratios of 2 and 4. A quantitative description of the vortex dynamics is provided and the effects of Reynolds number and impingement height on the vortex evolution are characterized for the experimental conditions investigated. Primary vortices are shed in a highly periodic manner with strengths that scale with Reynolds number. Primary vortex merging is observed in the wall-jet region for all test conditions while increasing the impingement height ratio from 2 to 4 causes vortex merging to also occur in the free-jet region. Passage of single and merged primary vortices induces the formation of secondary vortices along the impingement surface, though the shedding frequencies of these secondary structures exhibit higher variability than that of the primary vortices. The secondary vortices are similar in strength to the primary vortices for a Reynolds number of 3000, but their relative circulation is decreased at a Reynolds number of 6000. Secondary vortex shedding at the lower Reynolds number leads to a higher growth rate of the wall-jet half-width due to pairing with primary vortices and subsequent ejection away from the surface, which is not found at the higher Reynolds number investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\({\Gamma }\) :

Circulation (m2 s−1)

\(\omega _{\text{ z }}\) :

Spanwise vorticity (\(\hbox {s}^{-1}\))

\({\tilde{u}}^*\), \({\tilde{v}}^*\) :

Bandpass filtered velocity fluctuations tangent and normal to the shear layer trajectory (\(\hbox {m s}^{-1}\))

\({\vec {U}}\) :

Velocity vector field with components U and V (\(\hbox {m s}^{-1}\))

B :

nozzle exit width (\(\hbox {m}\))

\(C_x\), \(C_y\) :

x and y location of vortex centroid (\(\hbox {m}\))

D :

nozzle exit diameter (\(\hbox {m}\))

f :

frequency (Hz)

H :

Distance between the jet exit plane and the impingement surface (\(\hbox {m}\))

K :

Turbulent kinetic energy (\(\hbox {m}^{2}\hbox {s}^{-2}\))

nt :

Direction tangent and nor mal to shear layer trajectory (\(\hbox {m}\))

P :

Turbulence production (\(\hbox {m}^{2}\hbox {s}^{-3}\))

u, v :

Fluctuating x and y component velocity (\(\hbox {m s}^{-1}\))

U,V :

x and y component velocity (\(\hbox {m s}^{-1}\))

\(u^*\), \(v^*\) :

Velocity fluctuations tangent and normal to the shear layer trajectory (\(\hbox {m s}^{-1}\))

\(u^\prime \), \(v^\prime \) :

Root mean square of the x and y component velocity (\(\hbox {m s}^{-1}\))

\(U_{\text{ m }}\) :

Maximum streamwise velocity in the wall-jet velocity profile (\(\hbox {m s}^{-1}\))

\(V_{\text{ c }}\) :

Streamwise velocity at the nozzle exit center (\(\hbox {m s}^{-1}\))

xy :

Direction parallel and normal to impinging surface (\(\hbox {m}\))

\(y_{\text{ m }}\) :

Wall-normal distance where the streamwise velocity is a maximum for a wall jet (\(\hbox {m}\))

\(y_{1/2}\) :

Wall-normal distance where the streamwise velocity is \(0.5U_{\text{ m }}\) for a wall jet (\(\hbox {m}\))

z :

Spanwise direction for nozzle (\(\hbox {m}\))

\(\mathrm {Re}_B\) :

Reynolds number based on nozzle width (\(V_cB/\nu \))

\(\mathrm {St}_B\) :

Strouhal number based on nozzle width (\(fB/V_{\text{c}}\))

\(t^*\) :

Dimensionless time (\(tV_{\text{ c }}/B\))

References

  • AbdulNour RS, Willenborg K, McGrath JJ, Foss JF, AbdulNour BS (2000) Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions. Exp Therm Fluid Sci 22(3–4):123–131

    Article  Google Scholar 

  • Akansu YE, Sarioglu M, Kuvvet K, Yavuz T (2008) Flow field and heat transfer characteristics in an oblique slot jet impinging on a flat plate. Int Commun Heat Mass Transfer 35(7):873–880

    Article  Google Scholar 

  • Ashforth-Frost S, Jambunathan K (1996) Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int Commun Heat Mass Transfer 23(2):155–162

    Article  Google Scholar 

  • Bajura RA, Catalano MR (1975) Transition in a two-dimensional plane wall jet. J Fluid Mech 70(04):773

    Article  Google Scholar 

  • Cantwell BJ, Coles D (1983) An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J Fluid Mech 136:321

    Article  Google Scholar 

  • Carlomagno GM, Ianiro A (2014) Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review. Exp Therm Fluid Sci 58:15–35

    Article  Google Scholar 

  • Cerretelli C, Williamson CH (2003) The physical mechanism for vortex merging. J Fluid Mech 475:41–77

    Article  MathSciNet  MATH  Google Scholar 

  • Chin D, Aganval M (1991) Mass transfer from an oblique impinging slot jet. J Electrochem Soc 183(9):2643

    Article  Google Scholar 

  • Chiriac VA, Ortega A (2002) A numerical study of the unsteady flow and heat tranfer in a transitional confined slot jet impinging on an isothermal surface. Int J Heat Mass Transf 45(6):1237–1248

    Article  MATH  Google Scholar 

  • Chung YM, Luo KH (2002) Unsteady heat transfer analysis of an impinging jet. J Heat Transf 124(6):1039

    Article  Google Scholar 

  • Cooper D, Jackson DC, Launder BE, Liao GX (1993) Impinging jet studies for turbulence model assessment-I. Flow-field experiments. Int J Heat Mass Transf 36(10):2675–2684

    Article  Google Scholar 

  • Cornaro C, Fleischer AS, Goldstein RJ (1999) Flow visualization of a round jet impinging on cylindrical surfaces. Exp Therm Fluid Sci 20(2):66–78

    Article  Google Scholar 

  • Didden N, Ho CM (1985) Unsteady separation in a boundary layer produced by an impinging jet. J fluid Mech 160:235–256

    Article  Google Scholar 

  • Donaldson CD, Snedeker RS (1971) A study of free jet impingement. part 1. Mean properties of free and impinging jets. J Fluid Mech 45(2):281–319

    Article  Google Scholar 

  • El Hassan M, Assoum HH, Sobolik V, Vétel J, Abed-Meraim K, Garon A, Sakout A (2012) Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp Fluids 52(6):1475–1489

    Article  Google Scholar 

  • Eriksson JG, Karlsson RI, Persson J (1998) An experimental study of a two-dimensional plane turbulent wall jet. Exp Fluids 25(1):50–60

    Article  Google Scholar 

  • Fairweather M, Hargrave G (2002) Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp Fluids 33(3):464–471

    Article  Google Scholar 

  • Fellouah H, Ball CG, Pollard A (2009) Reynolds number effects within the development region of a turbulent round free jet. Int J Heat Mass Transf 52(17–18):3943–3954

    Article  Google Scholar 

  • Feng SS, Kuang JJ, Wen T, Lu TJ, Ichimiya K (2014) An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling. Int J Heat Mass Transf 77:1063–1074

    Article  Google Scholar 

  • Gauntner J, Livingood J, Hrycak P (1970) Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate

  • Geers LFG, Tummers MJ, Hanjalic K (2004) Experimental investigation of impinging jet arrays. Exp Fluids 36(6):946–958

    Article  Google Scholar 

  • Gogineni S, Shih C (1997) Experimental investigation of the unsteady structure of a transitional plane wall jet. Exp Fluids 23(2):121–129

    Article  Google Scholar 

  • Gutmark E, Wolfshtein M, Wygnanski I (1978) The plane turbulent impinging jet. J Fluid Mech 88(4):737–756

    Article  Google Scholar 

  • Hadžiabdić M, Hanjalić K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260

    Article  MATH  Google Scholar 

  • Hall JW, Ewing D (2006) On the dynamics of the large-scale structures in round impinging jets. J Fluid Mech 555:439–458

    Article  MATH  Google Scholar 

  • Han B, Goldstein RJ (2003) Instantaneous energy separation in a free jet. Part I. Flow measurement and visualization. Int J Heat Mass Transfer 46(21):3975–3981

    Article  Google Scholar 

  • Han B, Goldstein RJ (2006) Jet-impingement heat transfer in gas turbine systems. Ann N York Acad Sci 934(1):147–161

    Article  Google Scholar 

  • Ho CM, Huang LS (1982) Subharmonics and vortex merging in mixing layers. J Fluid Mech 119:443–473

    Article  Google Scholar 

  • Huang JF, Zhou Y, Zhou T (2006) Three-dimensional wake structure measurement using a modified PIV technique. Exp Fluids 40(6):884–896

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69

    Article  MathSciNet  MATH  Google Scholar 

  • Kataoka K, Suguro M, Degawa H, Maruo K, Mihata I (1987) The effect of surface renewal due to large-scale eddies on jet impingement heat transfer. Int J Heat Mass Transf 30(3):559–567

    Article  Google Scholar 

  • Kawall JG, Shokr M, Keffer JF (1983) A digital technique for the simultaneous measurement of streamwise and lateral velocities in turbulent flows. J Fluid Mech 133(1):83

    Article  Google Scholar 

  • Knowles K, Myszko M (1998) Turbulence measurements in radial wall-jets. Exp Therm Fluid Sci 17(1–2):71–78

    Article  Google Scholar 

  • Kristiawan M, Meslem A, Nastase I, Sobolik V (2012) Wall shear rates and mass transfer in impinging jets: comparison of circular convergent and cross-shaped orifice nozzles. Int J Heat Mass Transf 55(1–3):282–293

    Article  Google Scholar 

  • Larraona GS, Rivas A, Antón R, Ramos JC, Pastor I, Moshfegh B (2013) Computational parametric study of an impinging jet in a cross-flow configuration for electronics cooling applications. Appl Therm Eng 52(2):428–438

    Article  Google Scholar 

  • Launder BE, Rodi W (1979) The turbulent wall jet. Progress Aerosp Sci 19(2–4):81–128

    Article  Google Scholar 

  • Launder BE, Rodi W (1983) The turbulent wall jet measurements and modeling. Annu Rev Fluid Mech 15(1):429–459

    Article  Google Scholar 

  • Martin RH, Buchlin JM (2011) Jet impingement heat transfer from lobed nozzles. Int J Therm Sci 50(7):1199–1206

    Article  Google Scholar 

  • Maurel S, Solliec C (2001) A turbulent plane jet impinging nearby and far from a flat plate. Exp Fluids 31(6):687–696

    Article  Google Scholar 

  • Medina H, Benard E, Early JM (2013) Reynolds number effects on fully developed pulsed jets impinging on flat surfaces. AIAA J 51(10):2305–2318

    Article  Google Scholar 

  • Meunier P, Ehrenstein U, Leweke T, Rossi M (2002) A merging criterion for two-dimensional co-rotating vortices. Phys Fluids 14(8):2757–2766

    Article  MathSciNet  MATH  Google Scholar 

  • Meunier P, Le Dizès S, Leweke T (2005) Physics of vortex merging. Comptes Rendus Physique 6(4–5):431–450

    Article  Google Scholar 

  • Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1(1):3–17

    Article  Google Scholar 

  • Narayanan V (2003) Time-resolved thermal surface flow structures in impinging slot jet flows. In: Heat Transfer: Volume 1, ASME, pp 585–594

  • Narayanan V, Seyed-Yagoobi J, Page RH (2004) An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow. Int J Heat Mass Transf 47(8–9):1827–1845

    Article  Google Scholar 

  • Nirmalkumar M, Katti V, Prabhu SV (2011) Local heat transfer distribution on a smooth flat plate impinged by a slot jet. Int J Heat Mass Transf 54(1–3):727–738

    Article  Google Scholar 

  • Nishino K, Samada M, Kasuya K, Torii K (1996) Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow. Int J Heat Fluid Flow 17(3):193–201

    Article  Google Scholar 

  • O’Donovan TS, Murray DB (2007a) Jet impingement heat transfer—Part I: mean and root-mean-square heat transfer and velocity distributions. Int J Heat Mass Transf 50(17–18):3291–3301

    Article  MATH  Google Scholar 

  • O’Donovan TS, Murray DB (2007b) Jet impingement heat transfer—Part II: a temporal investigation of heat transfer and local fluid velocities. Int J Heat Mass Transf 50(17–18):3302–3314

    Article  MATH  Google Scholar 

  • Polat S (1993) Heat and mass transfer in impingement drying. Dry Technol 11(6):1147–1176

    Article  Google Scholar 

  • Polat S, Huang B, Mujumdar AS, Douglas WJM (1989) Numerical flow and heat transfer under impinging jets: a review. Annu Rev Heat Trans 2(2):157–197

    Article  MATH  Google Scholar 

  • Popiel CO, Trass O (1991) Visualization of a free and impinging round jet. Exp Therm Fluid Sci 4(3):253–264

    Article  Google Scholar 

  • Rostamy N, Bergstrom DJ, Sumner D, Bugg JD (2011) The effect of surface roughness on the turbulence structure of a plane wall jet. Phys Fluids 23(8):085103

    Article  Google Scholar 

  • Roux S, Fénot M, Lalizel G, Brizzi LE, Dorignac E (2011) Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int J Heat Mass Transf 54(15–16):3277–3290

    Article  Google Scholar 

  • Sakakibara J, Hishida K, Maeda M (1997) Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence). Int J Heat Mass Transf 40(13):3163–3176

    Article  Google Scholar 

  • San JY, Chen JJ (2014) Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array. Int J Heat Mass Transf 71:8–17

    Article  Google Scholar 

  • Shinneeb AM, Balachandar R, Bugg JD (2008) Analysis of coherent structures in the far-field region of an axisymmetric free jet identified using particle image velocimetry and proper orthogonal decomposition. J Fluids Eng 130(1):011202

    Article  Google Scholar 

  • Sodjavi K, Montagné B, Bragança P, Meslem A, Byrne P, Degouet C, Sobolik V (2016) PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets. Exp Therm Fluid Sci 70:417–436

    Article  Google Scholar 

  • Tachie MF, Balachandar R, Bergstrom DJ (2004) Roughness effects on turbulent plane wall jets in an open channel. Exp Fluids 37(2):281–292

    Article  Google Scholar 

  • Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54(23–24):4939–4948

    Article  Google Scholar 

  • Violato D, Ianiro A, Cardone G, Scarano F (2012) Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Flow 37:22–36

    Article  Google Scholar 

  • Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  • Xu Z, Hangan H (2008) Scale, boundary and inlet condition effects on impinging jets. J Wind Eng Ind Aerodyn 96(12):2383–2402

    Article  Google Scholar 

  • Yazici H, Akcay M, Golcu M, Koseoglu M, Sekmen Y (2015) Experimental investigation of transient temperature in glass tempering processing. Iran J Sci Technol, Trans Mech Eng 39(M2):337–349

    Google Scholar 

  • Zuckerman N, Lior N (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Transf 39(C):565–631

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario Centres of Excellence (OCE), and Suncor Energy for funding this work. The authors kindly acknowledge the contribution of Jeffrey McClure in developing the vortex identification routine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhiy Yarusevych.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieris, S., Zhang, X., Yarusevych, S. et al. Vortex dynamics in a normally impinging planar jet. Exp Fluids 60, 84 (2019). https://doi.org/10.1007/s00348-019-2728-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-019-2728-z

Navigation