Skip to main content
Log in

Experimental study of near-wall turbulent characteristics in an open-channel with gravel bed using an acoustic Doppler velocimeter

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This experimental study investigated the mean velocity profiles, skin friction and turbulent characteristics of a gravel bed over a wide range of roughness using an acoustic Doppler velocimeter (ADV). The median diameter of bed material ranged from 2 to 40 mm, and the normalized roughness heights ranged from 47 to 4,881 mm. The flow regime was fully developed turbulence with a Reynolds number in the range of 4.2 × 104–9.86 × 104. All velocity curves exhibited logarithmic distributions, and the log-law region was influenced greatly by both the roughness and the Reynolds number. Moreover, the roughness of the gravel bed exerted a strong effect on Reynolds stress, and the turbulence tended towards isotropic with increasing roughness. Using statistical analyses, the third-order turbulence moments, sweep, and ejection motions were also examined. The results of this experimental analysis present a contrast to the classical wall similarity hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antonia RA, Krogstad P-A (2001) Turbulence structure in boundary layers over different types of surface roughness. Fluid Dyn Res 28:139–157

    Article  Google Scholar 

  • Akinlade DB, Bergstrom DJ, Tachie MF, Castillo L (2004) Outer flow scaling of smooth and rough wall turbulent boundary layers. Exp Fluids 37(4):604–612

    Article  Google Scholar 

  • Antonia RA (2001) Turbulence structure in boundary layers over different types of surface roughness. Fluid Dyn Res 28(2):139–157

    Article  MathSciNet  Google Scholar 

  • Bakken OM, Krogstad P, Ashrafian A, Andersson HI (2005) Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls. Phys Fluids 17(6):065101

    Article  Google Scholar 

  • Bandypadhyay PR, Watson RD (1988) Structure of rough-wall turbulent boundary layers. Phys Fluids 31(7):1877–1883

    Article  Google Scholar 

  • Bhaganagar K, Kim J, Coleman G (2004) Effect of roughness on wall-bounded turbulence. Flow Turbulence Combust 72:463–492

    Article  MATH  Google Scholar 

  • Bigillon F, Niño Y, Garcia MH (2006) Measurements of turbulence characteristics in an open-channel flow over a transitionally-rough bed using particle image velocimetry. Exp Fluids 41(6):857–867

    Article  Google Scholar 

  • Biron PM, Lane SN, Roy AG, Bradbrook KF, Richards KS (1998) Sensitivity of bed shear stress estimated from vertical velocity profiles: the problem of sampling resolution. Earth Surf Proc Land 23(2):133–139

    Article  Google Scholar 

  • Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: wall function problems. Atmos Environ 41(2):238–252

    Article  Google Scholar 

  • Brzek B, Cal RB, Johansson G, Castillo L (2007) Inner and outer scalings in rough surface zero pressure gradient turbulent boundary layers. Phys Fluids 19(6):065101

    Article  Google Scholar 

  • Buffin-Belanger T, Roy AG (2005) 1 min in the life of a river: selecting the optimal record length for the measurement of turbulence in fluvial boundary layers. Geomorphology 68:77–94

    Article  Google Scholar 

  • Cal RB, Brzek B, Johansson TG, Castillo L (2009) The rough favourable pressure gradient turbulent boundary layer. J Fluid Mech 641:129–155

    Article  MATH  Google Scholar 

  • Carollo FG, Ferro V, Termini D (2005) Analyzing turbulence intensity in gravel bed channels. J Hydraul Eng 131(12):1050–1061

    Article  Google Scholar 

  • Castillo L, Seo J, Hangan H, Johansson TG (2004) Smooth and rough turbulent boundary layers at high Reynolds number. Exp Fluids 36(5):759–774

    Article  Google Scholar 

  • Dean RB (1978) Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J Fluid Eng 100:215–223

    Article  Google Scholar 

  • Dey S, Lambert MF (2005) Reynolds stress and bed shear in nonuniform unsteady open-channel flow. J Hydraul Eng 131(7):610–614

    Article  Google Scholar 

  • Ferro V (1999) Friction factor for gravel-bed channel with high boulder concentration. J Hydraul Eng 125(7):771–778

    Article  Google Scholar 

  • Ferro V (2003a) Flow resistance in gravel-bed channels with large-scale roughness. Earth Surf Proc Land 28(12):1325–1339

    Article  Google Scholar 

  • Ferro V (2003b) ADV measurements of velocity distributions in a gravel-bed flume. Earth Surf Proc Land 28(7):707–722

    Article  Google Scholar 

  • Ferro V, Baiamonte G (1994) Flow velocity profiles in gravel-bed rivers. J Hydraul Eng 120(1):60–80

    Article  Google Scholar 

  • Ferro V, Giordano G (1991) Experimental study of flow resistance in gravel-bed rivers. J Hydraul Eng 117(10):1239–1246

    Article  Google Scholar 

  • Flack KA, Schultz MP, Shapiro TA (2005) Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys Fluids 17(3):035102

    Article  Google Scholar 

  • Flack K, Schultz MS, Connelly JS (2007) Examination of a critical roughness height for outer layer similarity. Phys Fluids 19(9):095104

    Article  Google Scholar 

  • Franca MJ (2005) A field study of turbulent flows in shallow gravel-bed rivers. PhD thesis, École Polytechnique Fédérale De Lausanne, Portugal

  • Hardy RJ, Best J, Lane SN, Carbonneau PE (2009) Coherent flow structures in a depth-limited flow over a gravel surface. The role of near-bed turbulence and influence of Reynolds number. J Geophys Res 113:F01003

    Article  Google Scholar 

  • Hassan MA, Reid I (1990) The influence of microform bed roughness elements on flow and sediment transport in gravel bed rivers. Earth Surf Proc Land 15(8):739–750

    Article  Google Scholar 

  • Hong J, Katz J, Schultz MP (2011) Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J Fluid Mech 667:1–37

    Article  MATH  Google Scholar 

  • Jay Lacey RW, Roy AG (2007) A comparative study of the turbulent flow field with and without a pebble cluster in a gravel bed river. Water Resour Res 43:W05502

    Article  Google Scholar 

  • Jimenez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36(1):173–196

    Article  MathSciNet  Google Scholar 

  • Kim J, Moin P, Moser RD (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    Article  MATH  Google Scholar 

  • Kim S-C, Friedrichs CT, Maa JP-Y, Wright LD (2000) Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J Hydraul Eng 126(6):399–406

    Article  Google Scholar 

  • Kirkbride A (1993) Observations of the influence of bed roughness on turbulence structure in depth limited flows over gravel beds. In: Clifford NJ, French JR, Hardisty J (eds) Turbulence: perspectives on flow and sediment transport. Wiley, Chichester, pp 185–196

  • Kirkbride AD, McLelland SJ (1994) Visualization of the turbulent-flow structure in a gravel-bed river. Earth Surf Proc Land 19(9):819–825

    Article  Google Scholar 

  • Krogstad P-A, Antonia RA, Browne WB (1992) Comparison between rough- and smooth-wall turbulent boundary layers. J Fluid Mech 245:599–617

    Article  Google Scholar 

  • Krogstad P-A, Antonia RA (1999) Surface roughness effects in turbulent boundary layers. Exp Fluids 27(55):450–460

    Article  Google Scholar 

  • Lane SN, Biron PM, Bradbrook KF, Butler JB, Chandler JH, Crowell MD et al (1998) Three-dimensional measurement of river channel flow processes using acoustic Doppler velocimetry. Earth Surf Proc Land 23(13):1247–1267

    Article  Google Scholar 

  • Lawless M, Robert A (2001) Three-dimensional flow structure around small-scale bedforms in a simulated gravel-bed environment. Earth Surf Proc Land 26(5):507–522

    Article  Google Scholar 

  • Leonardi S, Orlandi P, Antonia RA (2005) A method for determining the frictional velocity in a turbulent channel flow with roughness on the bottom wall. Exp Fluids 38(6):796–800

    Article  Google Scholar 

  • Lopez F, Garcia MH (1999) Wall similarity in turbulent open-channel flow. J Eng Mech 125(7):789–796

    Article  Google Scholar 

  • Lu WZ, Leung AYT (2003) A preliminary study on potential of developing shower/laundry wastewater reclamation and reuse system. Chemosphere 52:1451–1459. doi:10.1016/S0045-6535(03)00482-X

  • Lyn DA (1993) Turbulence measurements in open-channel flows over artificial bed forms. J Hydraul Eng 119(3):306–326

    Article  Google Scholar 

  • McLelland SJ, Nicholas AP (2000) A new method for evaluating errors in high-frequency ADV measurements. Hydrol Process 14(2):351–366

    Article  Google Scholar 

  • Nagib HM, Christophorou C, Monkewitz PA (2006) High Reynolds number turbulent boundary layers subjected to various pressure-gradient condition. In: Meier GEA, Sreenivasan KR (eds) IUTAM symposium on 100 years of boundary layer research, pp 383–394

  • Nakagawa H, Nezu I, Ueda H (1975) Turbulence of open channel flow over smooth and rough beds. Proc Jpn Soc Civil Eng 241:155–168

    Article  Google Scholar 

  • Newhall KA (2006) Turbulent boundary layers: a look at skin friction, pressure gradient, surface roughness and the power law. Masters thesis, Rensselaer Polytechnic Institute, New York

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows IAHR monograph. Balkema, Rotterdam

    Google Scholar 

  • Nezu I, Rodi W (1986) Open-channel flow measurements with a laser Doppler anemometer. J Hydraul Eng ASCE 112(5):411–429

    Article  Google Scholar 

  • Nikora VI, Smart GM (1997) Turbulence characteristics of New Zealand gravel-bed rivers. J Hydraul Eng 123(9):764–773

    Article  Google Scholar 

  • Nikora VI, Goring DG, Biggs BJ (1998) ADV measurements of turbulence: can we improve their interpretation. J Hydraul Eng 124(6):630–634

    Article  Google Scholar 

  • Paiement-Paradis G, Buffin-Belanger T, Roy AG (2003) Scalings for large turbulent flow structures in gravel-bed rivers. Geophys Res Lett 30(14):1773, doi:10.1029/2003GL017553

    Article  Google Scholar 

  • Perry AE, Schofield WH, Joubert PN (1969) Rough wall turbulent boundary layers. J Fluid Mech 37(2):383–413

    Article  Google Scholar 

  • Raupach MR (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108:363–382

    Article  MATH  Google Scholar 

  • Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Schultz MP, Flack KA (2005) Outer layer similarity in fully rough turbulent boundary layers. Exp Fluids 38:328–340

    Article  Google Scholar 

  • Schultz MP, Flack KA (2007) The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J Fluid Mech 580:381–405

    Article  MATH  Google Scholar 

  • Sheng J, Malkiel E, Katz J (2008) Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer. Exp Fluids 45(6):1023–1035

    Article  Google Scholar 

  • Shocking MA, Allen JJ, Smits AJ (2006) Roughness effects in turbulent pipe flow. J Fluid Mech 564:267–285

    Article  Google Scholar 

  • Shvidchenko AB, Pender G (2001) Macroturbulent structure of open-channel flow over gravel beds. Water Resour Res 37(3):709–719

    Article  Google Scholar 

  • Smart GM (1999) Turbulent velocity profiles and boundary shear in gravel bed rivers. J Hydraul Eng 125(2):106–116

    Article  MathSciNet  Google Scholar 

  • Song T, Chiew YM, Mechanics E (2001) Turbulence measurement in nonuniform open-channel flow using acoustic Doppler velocimeter (ADV). J Eng Mech 127(3):219–232

    Article  Google Scholar 

  • Stone M, Tritico H, Hotchkiss R, Flanagan P (2003) Turbulence characteristics in obstructed gravel bed flow. In 16th ASCE engineering mechanics conference, Seattle, pp 1–6

  • Tachie M, Bergstrom D, Balachandar R (2000) Rough wall turbulent boundary layers in shallow open channel flow. J Fluid Mech 122:533–541

    Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tritico HM, Hotchkiss RH (2005) Unobstructed and obstructed turbulent flow in gravel bed rivers. J Hydraul Eng 131(8):635–645

    Article  Google Scholar 

  • van Rijn LC (1982) Equivalent roughness of alluvial bed. J Hydraul Div Am Soc Civ Eng 108(10):1215–1218

    Google Scholar 

  • Volino RJ, Schultz MP, Flack KA (2007) Turbulence structure in rough- and smooth-wall boundary layers. J Fluid Mech 592:263–293

    Article  MATH  Google Scholar 

  • Volino RJ, Schultz MP, Flack KA (2009) Turbulence structure in a boundary layer with two-dimensional roughness. J Fluid Mech 635:75–101

    Article  MATH  Google Scholar 

  • Voulgaris G, Trowbridge JH (1998) Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J Atmos Ocean Tech 15(1):272–289

    Article  Google Scholar 

  • Wang J–J (1991) Distribution of turbulent intensity in a gravel-bed flume. Exp Fluids 11(2–3):201–202

    Google Scholar 

  • Wang JJ, Dong Z (1996) Open-channel turbulent flow over non-uniform gravel beds. Appl Sci Res 56(4):243–254

    Article  Google Scholar 

  • Wang JJ, Dong ZN, Chen CZ, Xia ZH (1993) The effects of bed roughness on the distribution of turbulent intensities in open-channel flow. J Hydraul Res 31(1):89–98

    Article  Google Scholar 

  • Wosnik M, Castillo L, George WK (2000) A theory for turbulent pipe and channel flows. J Fluid Mech 42(1):115–145

    Article  Google Scholar 

  • Wu Y, Christensen KT (2007) Outer-layer similarity in the presence of practical rough-wall topography. Phys Fluids 19(8):085108

    Article  Google Scholar 

  • Yang QY, Wang XY, Lu WZ, Wang XK (2009) Experimental study on characteristics of separation zone in confluence zone in rivers. J Hydrol Eng 14(2):166–177. doi:10.1061/(ASCE)1084-0699(2009)14:2(166)

    Google Scholar 

  • Zanoun E, Durst F, Nagib H (2003) Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys Fluids 15(10):3079–3089

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported partially by a Strategic Research Grant from the City University of Hong Kong, Hong Kong Special Administrative Region, HKSAR [Project No. 7002684(BC)], and the National Natural Science Foundation of China (Grant No. 40771022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Z. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.Y., Yang, Q.Y., Lu, W.Z. et al. Experimental study of near-wall turbulent characteristics in an open-channel with gravel bed using an acoustic Doppler velocimeter. Exp Fluids 52, 85–94 (2012). https://doi.org/10.1007/s00348-011-1202-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1202-3

Keywords

Navigation