Skip to main content
Log in

Transient growth instability cancelation by a plasma actuator array

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This study investigates an actuation scheme that can be integrated as part of a feedback control system in the laboratory for the purpose of negating the transient growth instability in a Blasius boundary layer and delaying transition. The actuators investigated here consist of a spanwise array of symmetric plasma actuators, which are capable of generating spanwise-periodic counter-rotating vortices. Three different actuator geometries are investigated, resulting in 45, 67 and 70% reduction of the total disturbance energy produced inside the boundary layer by an array of roughness elements. It is demonstrated that the control effectiveness of the actuators can be significantly improved by optimizing the geometry of the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Rahman A, Tropea C, Slawson P, Strong A (1987) On temperature compensation in hot-wire anemometry. J Phys E Sci Instrum 20:315–319

    Article  Google Scholar 

  • Bewley TR, Liu S (1998) Optimal and robust control and estimation of linear paths to transition. J Fluid Mech 365(1):305–349

    Article  MATH  MathSciNet  Google Scholar 

  • Butler KM, Farrell BF (1992) Three-dimensional optimal perturbations in viscous shear flow. Phys Fluid Fluid Dynam 4(8):1637–1650

    Article  Google Scholar 

  • Corke TC, Post ML, Orlov DM (2007) SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Progr Aero Sci 43:193–217

    Article  Google Scholar 

  • Fransson JHM, Brandt L, Talamelli A, Cossu C (2004) Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys Fluid 16(10):3627–3638

    Article  Google Scholar 

  • Gaster M (2006) Active control of laminar boundary layer disturbances. In: Morrison JF, Birch DM, Lavoie P (eds) IUTAM symposium on flow control and MEMS, Springer, IUTAM Symposium London/England

  • Goldstein ME, Leib SJ (1993) Three-dimensional boundary-layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow. J Fluid Mech 246:21–41

    Article  MATH  Google Scholar 

  • Goldstein ME, Sescu A (2008) Boundary-layer transition at high free-stream disturbance levels—beyond Klebanoff modes. J Fluid Mech 613:95–124

    Article  MATH  MathSciNet  Google Scholar 

  • Grundmann S, Tropea C (2007) Experimental transition delay using glow-discharge plasma actuators. Exp Fluids 42(4):653–657

    Article  Google Scholar 

  • Grundmann S, Tropea C (2008) Active cancellation of artificially introduced Tollmien Schlichting waves using plasma actuators. Exp Fluids 44:795–806

    Article  Google Scholar 

  • Jacobson SA, Reynolds WC (1998) Active control of streamwise vortices and streaks in boundary layers. J Fluid Mech 360(1):179–211

    Article  MATH  Google Scholar 

  • Kim J, Bewley TR (2007) A linear systems approach to flow control. Annu Rev Fluid Mech 39:383–417

    Article  MathSciNet  Google Scholar 

  • Kim J, Lim J (2000) A linear process in wall-bounded turbulent shear flows. Phys Fluid 12:1885–1888

    Article  MathSciNet  Google Scholar 

  • Lavoie P, Naguib AM, Morrison JF (2008) Transient growth induced by surface roughness in a Blasius boundary layer. In: Proceedings of ICTAM, Adelaide, Australia

  • Leib SJ, Wundrow DW, Goldstein ME (1999) Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J Fluid Mech 380:169–203

    Article  MATH  MathSciNet  Google Scholar 

  • Luchini P (2000) Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J Fluid Mech 404:289–309

    Article  MATH  MathSciNet  Google Scholar 

  • Lundell F (2007) Reactive control of transition induced by free-stream turbulence: an experimental demonstration. J Fluid Mech 585:41–71

    Article  MATH  Google Scholar 

  • Lundell F, Monokrousos A, Brandt L (2009) Feedback control of boundary layer bypass transition: experimental and numerical progress. AIAA paper 2009–612

  • Milling RW (1981) Tollmien-Schlichting wave cancellation. Phys Fluid 24:979–981

    Article  Google Scholar 

  • Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17

    Article  Google Scholar 

  • Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D Appl Physics 40(3):605–636

    Article  Google Scholar 

  • Rathnasingham R, Breuer KS (2003) Active control of turbulent boundary layers. J Fluid Mech 495:209–233

    Article  MATH  Google Scholar 

  • Reshotko E (2001) Transient growth: a factor in bypass transition. Phys Fluid 13(5):1067–1075

    Article  Google Scholar 

  • Ricco P, Wu X (2007) Response of a compressible laminar boundary layer to free-stream vortical disturbances. J Fluid Mech 587:97–138

    Article  MATH  MathSciNet  Google Scholar 

  • Roth JR, Sherman DM, Wilkinson SP (2000) Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J 38:1166–1172

    Article  Google Scholar 

  • Saric WS, Reed HL, Kerschen EJ (2002) Boundary-layer receptivity to freestream disturbances. Annu Rev Fluid Mech 34:291–319

    Article  MathSciNet  Google Scholar 

  • Schmid PJ, Henningson DS (1990) Stability and Transition in Shear Flows. Springer, Berlin

    Google Scholar 

  • Tropea C, Yarin AL, Foss JF (eds) (2007) Springer handbook of experimental fluid mechanics. Springer, Berlin

    Google Scholar 

  • White EB (2002) Transient growth of stationary disturbances in a flat plate boundary layer. Phys Fluid 14:4429–4439

    Article  Google Scholar 

  • Wu X, Choudhari M (2003) Linear and nonlinear instabilities of a Blasius boundary layer perturbed by streamwise vortices. Part 2. Intermittent instability induced by long-wavelength Klebanoff modes. J Fluid Mech 483:249–286

    Article  MATH  MathSciNet  Google Scholar 

  • Wundrow DW, Goldstein ME (2001) Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J Fluid Mech 426:229–262

    Article  MATH  MathSciNet  Google Scholar 

  • Zaki TA, Durbin PA (2005) Mode interaction and the bypass route to transition. J Fluid Mech 531:85–111

    Article  MATH  MathSciNet  Google Scholar 

  • Zaki TA, Durbin PA (2006) Continuous mode transition and the effects of pressure gradient. J Fluid Mech 563:357–388

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The financial support of NSERC (Canada), EPSRC (UK, GR/S82947/01) and the Connaught Fund of the University of Toronto is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lavoie.

Appendix: A uncertainty analysis

Appendix: A uncertainty analysis

The analysis followed to estimate the uncertainty on the measured values of \(\overline{\phi_u}\) is summarized here. Since most of the energy is contained in the first mode i = 1 (i.e. for β f ), (1) suggests that the relative uncertainty on ϕ u f ) can be approximated by

$$ \frac{\delta\left\langle u^2\right\rangle}{\left\langle u^2\right\rangle} = \frac{\delta \phi_u(\beta_f)}{\phi_u(\beta_f)}, $$
(3)

where δα is the uncertainty on parameter α. Given that u = U − 〈U〉, it can be shown that

$$ \left\langle u^2\right\rangle = \left\langle U^2\right\rangle - \left\langle U\right\rangle^2. $$
(4)

From here, the uncertainty due to bias and precision errors need to be treated separately. Considering the bias errors first, it is clear that δ〈U 2〉 and δ〈U2 are correlated such that

$$ \left[\delta\left\langle u^2\right\rangle\right]_b = \left[\delta\left\langle U^2\right\rangle\right]_b - \left[\delta\left\langle U\right\rangle^2\right]_b, $$
(5)

where the subscript b denotes an uncertainty associated with bias error sources. If the relative uncertainty on each U measurements remains constant, which is typically the case in experiments, it can be shown that

$$ \left[\frac{\delta\left\langle U^2\right\rangle}{\left\langle U^2\right\rangle}\right]_b =\left[\frac{\delta\left\langle U\right\rangle^2}{\left\langle U\right\rangle^2}\right]_b = 2 \left[\frac{\delta U}{U}\right]_b. $$
(6)

Therefore,

$$ \left[\delta\left\langle u^2\right\rangle\right]_b = 2\left\langle U^2\right\rangle \left[\frac{\delta U}{U}\right]_b - 2 \left\langle U\right\rangle^2\left[\frac{\delta U}{U}\right]_b, $$
(7)

but by invoking (4), this equation simplifies to

$$ \left[\frac{\delta\left\langle u^2\right\rangle}{\left\langle u^2\right\rangle}\right]_b = 2 \left[\frac{\delta U}{U}\right]_b. $$
(8)

Considering now the precision errors, the uncertainty on δ〈u 2 〉 is conservatively given by

$$ \left[\delta\left\langle u^2\right\rangle\right]^2_p = \left[\delta\left\langle U^2\right\rangle\right]_p^2 + \left[\delta\left\langle U\right\rangle^2\right]_p^2, $$
(9)

where the subscript p denotes an uncertainty associated with a source of precision error. The surrogate of (5) for precision errors is

$$ \left[\frac{\delta\left\langle U^2\right\rangle}{\left\langle U^2\right\rangle}\right]_p =\left[\frac{\delta\left\langle U\right\rangle^2}{\left\langle U\right\rangle^2}\right]_p = \frac{2}{\sqrt{N_z}} \left[\frac{\delta U}{U}\right]_p, $$
(10)

where N z is the number of independent samples relevant to the spanwise average. Introducing (4) and (10) into (9), the following can be obtained

$$ \left[\frac{\delta\left\langle u^2\right\rangle}{\left\langle u^2\right\rangle}\right]_p = \frac{2}{\sqrt{N_z}}\left(1 + 2 \frac{\left\langle U \right\rangle^2}{\left\langle u^2\right\rangle} + 2\frac{\left\langle U\right\rangle^4}{\left\langle u^2\right\rangle^2}\right)^{1/2} \left[\frac{\delta U}{U}\right]_p. $$
(11)

The terms in the round brackets represent the effect of the signal to noise ratio. Since 〈U2/〈u 2〉 ≫ 1, (11) can be approximated as

$$ \left[\frac{\delta\left\langle u^2\right\rangle}{\left\langle u^2\right\rangle}\right]_p = 2\sqrt{\frac{2}{N_z}} \frac{\left\langle U\right\rangle^2}{\left\langle u^2\right\rangle} \left[\frac{\delta U}{U}\right]_p. $$
(12)

The degradation of the uncertainty on 〈u 2〉, and thus ϕ u f ), due to the relative magnitude of the velocity disturbance compared to the mean velocity profile (i.e. the signal to noise ratio) is clear from (12). Therefore, the precision uncertainty for a given case depends on the strength of the resulting disturbance.

Given (2), \(\overline{\phi_u}\) can be approximated as

$$ \overline{\phi_u}\simeq \frac{1}{5\delta}\sum_i \phi_u^i(\beta_f) \Updelta y_i, $$
(13)

where i denotes a variable measured at the ith location above the wall and \(\Updelta y_i = y_i-y_{i-1}.\) Considering precision errors, it is reasonable to assume that the spanwise measurements at each wall-normal locations are independent and that the precision uncertainty on the wall-normal location of these measurements are negligible. Therefore, it follows that

$$ \left[\delta\overline{\phi_u}\right]_p^2 = \frac{1}{(5\delta)^2}\sum_i \left[\delta\phi_u^i(\beta_f)\right]_p^2 \delta y_i^2, $$
(14)

where the subscript p denotes the precision uncertainty. For simplicity, let us assume that \(\Updelta y_i =\Updelta y\) for all i. Noting that \(5\delta = N_y \Updelta y,\) (14) simplifies to

$$ \left[\delta\overline{\phi_u}\right]^2_p = \frac{\overline{\left[\delta\phi_u^i(\beta_f)\right]_p^2}}{N_y}, $$
(15)

where N y is the number of spanwise scans for 0 < y ≤ 5δ and the overbar denotes an average over the boundary layer thickness. Combining (3) and (12), and since \(\phi_u^i(\beta_f)\simeq \left\langle u^2\right\rangle,\) yields after simplication

$$ \overline{\left[\delta\phi_u^i(\beta_f)\right]_p^2} = \frac{8}{N_z} \overline{\left\langle U\right\rangle^4}\left[\frac{\delta U}{U}\right]_p^2. $$
(16)

Therefore, one can write (15) as

$$ \left[\frac{\delta\overline{\phi_u}}{\overline{\left\langle u^2\right\rangle}}\right]^2_p = \frac{8}{N_yN_z}\frac{\overline{\left\langle U\right\rangle^4}}{\overline{\left\langle u^2\right\rangle}^2}\left[\frac{\delta U}{U}\right]^2_p. $$
(17)

Clearly, the precision uncertainty will diminish as a result of the averaging over the boundary layer thickness due to its inverse dependence on \(\sqrt{N_y}.\) In the case of bias errors, the uncertainty on the measurements at each wall-normal locations are not independent. Therefore,

$$ \left[\delta\overline{\phi_u}\right]^2_b =\overline{\left[\delta\phi_u^i(\beta_f)\right]_b^2}, $$
(18)

which, when combined with (8), becomes

$$ \left[\frac{\delta\overline{\phi_u}}{\overline{\left\langle u^2\right\rangle}}\right]_b = 2 \left[\frac{\delta U}{U}\right]_b. $$
(19)

The above equations imply that the uncertainty due to these errors cannot be reduced by increasing the number wall-normal measurements. The overall uncertainty is given by

$$ \left[\delta\overline{\phi_u}\right]^2 = \left[\delta\overline{\phi_u}\right]_b^2 + \left[\delta\overline{\phi_u}\right]_p^2. $$
(20)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, R.E., Lavoie, P., Naguib, A.M. et al. Transient growth instability cancelation by a plasma actuator array. Exp Fluids 49, 1339–1348 (2010). https://doi.org/10.1007/s00348-010-0877-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0877-1

Keywords

Navigation