Skip to main content
Log in

Performance of a 12-sensor vorticity probe in the near field of a rectangular turbulent jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The design and operational characteristics of a 12-sensor hot wire probe for three-dimensional velocity–vorticity measurements in turbulent flow fields is described and discussed. The performance of the probe is investigated in comparison with X-sensor probe measurements in the near field of a rectangular turbulent jet with aspect ratio 6. Measurements have been conducted at Reynolds number Re D  = 21,000 at nozzle distances of x/D = 1, 3, 6 and 11, where D is the width of the nozzle. The results obtained with the 12-sensor probe compare well to the results of the X-sensor probe. Distributions of mean and fluctuating velocity–vorticity fields are presented and discussed. Among the results the most prominent is the experimental confirmation of the high levels of fluctuating vorticity in the shear layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle imaging techniques for fluid mechanics. Annu Rev Fluid Mech 20:261–304

    Article  Google Scholar 

  • Agui JH, Andreopoulos Y (2003) A new laser vorticity probe-LAVOR: Its development and validation in a turbulent boundary layer. Exp Fluids 34:192–205

    Article  Google Scholar 

  • Αntonia RA, Browne LWB, Rajagopalan S, Chambers AJ (1983) On the organized motion of the turbulent plane jet. J Fluid Mech 134:49–66

    Article  Google Scholar 

  • Αntonia RA, Zhu Y, Kim J (1993) On the measurement of lateral velocity derivatives in turbulent flows. Exp Fluids 15:65–69

    Google Scholar 

  • Balint J-L, Wallace JM, Vukoslavčević P (1989) The statistical properties of the vorticity field of a two-stream mixing layer. In: Fernholz HH (ed) Advances in turbulence 2. Second European Turbulence Conference 1988, Fielder HE: 74–78. Springer, Berlin, p 552

  • Balint J-L, Wallace JM, Vukoslavčević P (1991) The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. J Fluid Mech 228:53–86

    Google Scholar 

  • Browne LWB, Antonia RA, Rajagopalan S, Chambers AJ (1983) Interaction region of a two-dimensional turbulent plane jet in still air. In: Dumas R, Fulachier L (eds) Structure of complex turbulent shear flow. Springer, Berlin, pp 411–419

    Google Scholar 

  • Browne LWB, Antonia R A, Chambers AJ (1984) The interaction region of turbulent plane jet. J Fluid Mech 149:355–373

    Article  Google Scholar 

  • Cenedese A, Romano GP, Di Felice F (1991) Experimental testing of Taylor’s hypothesis by L.D.A. in highly turbulent flow. Exp Fluids 11:351–358

    Article  Google Scholar 

  • Everett KW, Robins AG (1978) The development and structure of turbulent plane jets. J Fluid Mech 88:91–122

    Google Scholar 

  • Foss JF, Haw RS (1990) Vorticity and velocity measurements in a 2:1 mixing layer. In: Bower WM, Morris MJ, Samimy M (eds) A Forum on Turbulent Flow, ASME FED, vol 94, pp 115–120

  • Gutmark E, Wygnanski I (1976) The planar turbulent jet. J Fluid Mech 73:465–495

    Article  Google Scholar 

  • Honkan A, Andreopoulos Y (1997a) Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J Fluid Mech 350:29–96

    Article  MathSciNet  Google Scholar 

  • Honkan A, Andreopoulos Y (1997b) Instantaneous three dimensional vorticity measurements in vertical flow over a delta wing. AIAA J 35:1612–1620

    Google Scholar 

  • Hussain AKMF, Clark R (1977) Upstream influence on the near field of a plane turbulent jet. Phys Fluids 20(9):1416–1426

    Article  Google Scholar 

  • Kit E, Tsinober A, Dracos T (1993) Velocity gradients in a turbulent jet flow. Appl Sci Res 51:185–190

    Article  Google Scholar 

  • Kotsovinos EN (1976) A note on the spreading rate and virtual origin of a plane turbulent jet. J Fluid Mech. 77:305–311

    Article  Google Scholar 

  • Krothapalli A, Baganoff D, Karamcheti K (1981) On the mixing of rectangular jet. J Fluid Mech 107:201–220

    Article  Google Scholar 

  • Lozanova M, Stankov P (1998) Experimental investigation on the similarity of a 3D rectangular turbulent jet. Exp Fluids 24:470–478

    Article  Google Scholar 

  • Lemonis G (1995) An experimental study of the vector fields of velocity and vorticity in turbulent flows. Doctoral thesis, Swiss Federal Institute of Technology, Zürich, Institute of Hidro-mechanics and Water Resources

  • Lemonis G (1997) Three-dimesional measurements of velocity, velocity gradients and related properties in turbulent flows. Aerosp Sci Tech 7:453–461

    Article  Google Scholar 

  • Lemonis G, Dracos T (1995) A new calibration and data reduction method for turbulence measurements by multi-hotwire probes. Exp Fluids 18:319-328

    Article  Google Scholar 

  • Lemonis G, Dracos T (1996) Determination of 3-D velocity and vorticity vectors in turbulent flows by multi-hotwire anemometry. In: Dracos T (ed) Three-dimensional velocity and vorticity measuring and image analysis techniques. Kluwer, Dordrecht

    Google Scholar 

  • Marasli B, Nguyen P, Wallace JM (1993) A calibration technique for multiple-sensor hot-wire probes and its application to vorticity measurements in the wake of a circular cylinder. Exp Fluids 15:209–218

    Article  Google Scholar 

  • Marsters GF, Fotneringham J (1980) The influence of aspect ratio on compressible turbulent flows from rectangular slots. Aeronaut Q 31(4):285–305

    Google Scholar 

  • Mi J, Antonia RA (1994) Correction to Taylor’s hypothesis in a turbulent circular jet. Phys Fluids 6(4):1548–1552

    Article  MATH  Google Scholar 

  • Pailhas G, Cousteix J (1986) Method for analyzing four-hot-wire probe measurements. Rech Aerosp 2:79

    Google Scholar 

  • Piomelli U, Balint J-L, Wallace JM (1989) On the validity of Taylor’s hypothesis for wall bounded turbulent flows. Phys Fluids A1:609

    Google Scholar 

  • Quinn WR (1992) Turbulent free jet flows issuing from sharp-edged rectangular slots: The influence of slot aspect ratio. Exp Thermal Fluid Sci 5:203–215

    Article  Google Scholar 

  • Rockwell DO, Niccolls WO (1972) Natural breakdown of planar jets. Trans ASME J Basic Engn 94:720–730

    Google Scholar 

  • Rosemann H (1989) Einfluß der geometrie von mehrfach-hitzdrahtsonden auf die meßergebnise inturbulenten strömungen. DLR-FB 89-26

  • Sato H (1960) The stability and transition of a two-dimensional jet. J Fluid Mech 7(1):53–80

    Article  MATH  MathSciNet  Google Scholar 

  • Sfeir AA (1976) The velocity and temperature fields of rectangular jets. Int J Heat Mass Transf 19:1289–1297

    Article  Google Scholar 

  • Sfeir AA (1979) Investigation of three-dimensional turbulent rectangular jets. AIAA J 17(10):1055–1060

    Google Scholar 

  • Sforza PM, Stasi W (1979) Heated three-dimensional turbulent jets. ASME J Heat Transf 101:353–358

    Google Scholar 

  • Sforza PM, Steiger MH, Trentacoste N (1966) Studies on three-dimensional viscous jets. AIAA J 5(5):800–806

    Google Scholar 

  • Schlichting H (1968) Boundary layer theory. McGraw-Hill, New York

    Google Scholar 

  • Stanley SA, Sarkar S (2000) Influence of nozzle conditions and discrete forcing on turbulent planar jets. AIAA J 38(9):1615–1623

    Article  Google Scholar 

  • Stanley SA, Sarkar S, Mellado JP (2002) A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J Fluid Mech 450:377–407

    MATH  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge

    Google Scholar 

  • Thomas FO, Prakash KMK (1991) An experimental investigation of the natural transition of an untuned planar jet. Phys Fluids A 3(1):90–105

    Article  Google Scholar 

  • Tsinober A, Kit E, Dracos T (1992) Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech 242:169–192

    Article  Google Scholar 

  • Tsuchiya Y, Horikoshi C, Sato T (1986) On the spread of rectangular jets. Exp Fluids 4:197–204

    Article  Google Scholar 

  • Vukoslavčević P, Wallace JM (1996) A 12-sensor hot-wire probe to measure the velocity and vorticity vectors in turbulent flow. Meas Sci Technol 7:1451–1461

    Article  Google Scholar 

  • Vukoslavčević P, Wallace JM, Balint J-L (1991) The velocity and vorticity vector fields of a turbulent boundary layer. Part 1. Simultaneus measurement by hot-wire anemometry. J Fluid Mech 228:25–51

    Google Scholar 

  • Wallace JM (1986) Methods of measuring vorticity in turbulent flows. Exp Fluids 4:61–71

    Article  Google Scholar 

  • Wallace JM, Foss JF (1995) The measurement of vorticity in turbulent flows. Annu Rev Fluid Mech 204:469–514

    Article  Google Scholar 

  • Werner JAD, Southerland KB (1997) Experimental assessment of Taylor’s hypothesis and its applicability to dissipation estimates in turbulent flows. Phys Fluids 9(7):2101–2107

    Article  Google Scholar 

  • Wier AD, Wood DH, Bradshaw P (1981) Interacting turbulent shear layers in a plane jet. J Fluid Mech 107:237–260

    Article  Google Scholar 

  • Zaman KBMQ, Hussain AKMF (1981) Taylor hypothesis and large-scale coherent structures. J Fluid Mech 112:379–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Panidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavo, A., Lemonis, G., Panidis, T. et al. Performance of a 12-sensor vorticity probe in the near field of a rectangular turbulent jet. Exp Fluids 43, 17–30 (2007). https://doi.org/10.1007/s00348-007-0308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0308-0

Keywords

Navigation