Skip to main content
Log in

Investigation of scalar measurement error in diffusion and mixing processes

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In variable density, multi-fluid and reacting flows, the degree of molecular mixing is a critical component of turbulent transfer and mixing models. Also, in many microflows and low Reynolds number flows, scalar diffusion length- and time-scales play a significant role in the mixing dynamics. Characterization of such molecular mixing processes requires scalar measurement devices with a small probe volume size. Spatial averaging, which occurs due to finite probe volume size, can lead to errors in resolving the density or scalar gradients between pockets of unmixed fluids. Given a probe volume size and a priori knowledge of the functional profile of the diffusion layer being measured, we obtain an estimate for the measurement error due to spatial averaging and make the corrections accordingly. An analytical model for the measure of scalar mixing is developed as a predictor for the growth of scalar gradients in a variable scalar flow. The model is applied to a buoyancy-driven mixing layer with a Prandtl number of 7. Measurements within the mixing layer have shown that initial entrainment of unmixed fluid causes a decrease in the measured amount of molecular mixing at the centerplane. Following this period of initial entrainment, the fluids within the mixing layer exhibit an increase in the degree of molecular mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anuchina NN, Kucherenko YA, Neuvazhaev VE, Ogibina VN, Shibarshov LI, Yakovlev VG (1978) Turbulent mixing at an accelerating interface between liquids of different densities. Izv Akad Nauk SSSR, Mekh Zhidk Gaza 6:157–160

    Google Scholar 

  • Balmer L (1991) Signals and systems: an introduction. Prentice Hall International Ltd, New York

    MATH  Google Scholar 

  • Boyce WE, DiPrima RC (1997) Elementary differential equations and boundary value problems. Wiley, New York

    Google Scholar 

  • Broadwell JE, Briedenthal RE (1982) A simple model of mixing and chemical reaction in a turbulent shear layer. J Fluid Mech 125:397–410

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publications Inc., New York

    MATH  Google Scholar 

  • Dalziel SB, Linden PF, Youngs DL (1999) Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability. J Fluid Mech 399:1–48

    Article  MATH  MathSciNet  Google Scholar 

  • Danckwerts PV (1952) The definition and measurement of some characteristics of mixtures. Appl Sci Res 3:279–296

    Google Scholar 

  • Karasso PS, Mungal MG (1997) Scalar mixing and reaction in plane liquid shear layers. J Fluid Mech 323:23–63

    Article  MathSciNet  Google Scholar 

  • King GF, Dutton JC, Lucht RP (1999) Instantaneous, quantitative measurements of molecular mixing in the axisymmetric jet near field. Phys Fluids 11:403–416

    Article  Google Scholar 

  • Koochesfahani MM, Dimotakis PE (1986) Mixing and chemical reactions in a turbulent liquid mixing layer. J Fluid Mech 170:83–112

    Article  Google Scholar 

  • Kukulka DJ (1981) Thermodynamic and transport properties of pure and saline water. MS Thesis, Statue University of New York at Buffalo

  • Lindl JD (1998) Inertial confinement fusion: the quest for ignition and energy gain using indirect drive. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mathematica 5.0 (2005) Wolfram Research, Inc

  • Meyer TR, Dutton JC, Lucht RP (2001) Experimental study of the mixing transition in a gaseous axisymmetric jet. Phys Fluids 13:3411–3424

    Article  Google Scholar 

  • Mueschke NJ (2004) An investigation o the influence of initial conditions on Rayleigh-Taylor mixing. M.S. Thesis. Texas A&M University

  • Ramaprabhu P (2004) On the dynamics of Rayleigh-Taylor mixing. PhD Thesis. Texas A&M University

  • Ramaprabhu P, Andrews MJ (2004) Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers. J Fluid Mech 502:233–271

    Article  MATH  Google Scholar 

  • Snider DM, Andrews MJ (1994) Rayleigh-Taylor and shear driven mixing with an unstable thermal stratification. Phys Fluids 6:3324–3334

    Article  Google Scholar 

  • Wilson PN (2002) A study of buoyancy and shear driven turbulence within a closed water channel. PhD Thesis. Texas A&M University

  • Wilson PN, Andrews MJ (2002) Spectral measurements of Rayleigh-Taylor mixing at small Atwood number. Phys Fluids 14:938–945

    Article  Google Scholar 

  • Youngs DL (1984) Numerical Simulation of turbulent mixing by Rayleigh-Taylor instability. Physica D 12:32–44

    Article  Google Scholar 

  • Youngs DL (1991) Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Phys Fluids A 3:1312–1320

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances Program through DOE Research Grant no. DE-FG03-02NA00060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Andrews.

Appendix A

Appendix A

1.1 Evaluation of convolution integral

The evaluation and algebraic simplification of the two convolution integrals in (14) are presented here for completeness. Given the actual scalar

$$\phi _{a} {\left(x \right)} = \ifmmode\expandafter\bar\else\expandafter\=\fi{\phi} + \frac{{\Delta \phi}}{2}\hbox{erf}{\left({\frac{x}{{L_{a}}}} \right),}$$
(30)

and the measurement probe’s response function

$${\Re}{\left(x \right)} = \left\{{\begin{array}{*{20}c} {{\frac{1}{{2R}}\hbox{e}^{{{x}/{R}}}}}, & {{x < 0}} \\ {{\frac{1}{{2R}}\hbox{e}^{{- {x}/{R}}}}}, & {{x \geqslant 0}} \\ \end{array}} \right. ,$$
(31)

the measured scalar trace is the convolution of the actual scalar value and response function

$$\phi _{m} {\left(x \right)} = \phi _{a} {\left(x \right)} \otimes R{\left(x \right)} = {\int\limits_{- \infty}^\infty {\phi _{a} {\left({x - {x}\ifmmode{'}\else$'$\fi} \right)}\,{\rm R}{\left({{x}\ifmmode{'}\else$'$\fi} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} = {\int\limits_{- \infty}^\infty {\phi _{a} {\Re}{\left(x \right)}\,{\left({x - {x}\ifmmode{'}\else$'$\fi} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}}.$$
(32)

Both integrals in (3) produce the same result by the commutative property of the convolution (Balmer 1991), thus only the first integral will be evaluated.

Using the definitions of in (30) and (31), (32) can be rewritten as

$$\phi _{m} {\left(x \right)} = {\int\limits_{- \infty}^0 {{\left[{\ifmmode\expandafter\bar\else\expandafter\=\fi{\phi} + \frac{{\Delta \phi}}{2}\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}\,{\left[{\frac{1}{{2R}}\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} + {\int\limits_0^\infty {{\left[{\ifmmode\expandafter\bar\else\expandafter\=\fi{\phi} + \frac{{\Delta \phi}}{2}\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}\,{\left[{\frac{1}{{2R}}\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}}.$$
(33)

The integrals can be further divided into

$$\begin{aligned} \phi _{m} {\left(x \right)} &= {\int\limits_{- \infty}^0 {\ifmmode\expandafter\bar\else\expandafter\=\fi{\phi}\,{\left[{\frac{1}{{2R}}\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} + {\int\limits_{- \infty}^0 {{\left[{\frac{{\Delta \phi}}{2}\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}\,{\left[{\frac{1}{{2R}}\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}}\\ &\quad + {\int\limits_0^\infty {\ifmmode\expandafter\bar\else\expandafter\=\fi{\phi}\,{\left[{\frac{1}{{2R}}\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} + {\int\limits_0^\infty {{\left[{\frac{{\Delta \phi}}{2}\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}\,{\left[{\frac{1}{{2R}}\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}}. \end{aligned}$$
(34)

The integral of a constant \(\bar{\phi}\) with ℜ(x) returns the value of the constant \(\bar{\phi}\) because the integral of ℜ(x, R) over −∞ to ∞ is unity. Thus, the ϕ m can be rewritten in a simpler form:

$$\phi _{m} {\left(x \right)} = \ifmmode\expandafter\bar\else\expandafter\=\fi{\phi} + \frac{{\Delta \phi}}{{4R}}{\int\limits_{- \infty}^0 {{\left[{\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}\,{\left[{\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} + \frac{{\Delta \phi}}{{4R}}{\int\limits_0^\infty {{\left[{\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}\,{\left[{\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}} \right]}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}}.$$
(35)

Symbolic integration of the two integrands in (35) were computed using Mathematica (Mathematica 2005):

$${\int\limits_{- \infty}^0 {\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} = {\left[{- \hbox{Re}^{{{\left({\frac{{L^{2}_{a} + 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{{{x}\ifmmode{'}\else$'$\fi}}{{L_{a}}} + \frac{{L_{a}}}{{2R}}} \right)} + \hbox{Re}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\, \hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}^{{{x}\ifmmode{'}\else$'$\fi = 0}}_{{{x}\ifmmode{'}\else$'$\fi = - \infty}},$$
(36)
$${\int\limits_0^\infty {\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{R}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} = {\left[{R\hbox{e}^{{{\left({\frac{{L^{2}_{a} - 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{{{x}\ifmmode{'}\else$'$\fi}}{{L_{a}}} - \frac{{L_{a}}}{{2R}}} \right)} - R\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\, \hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}} \right]}^{{{x}\ifmmode{'}\else$'$\fi = \infty}}_{{{x}\ifmmode{'}\else$'$\fi = 0}}.$$
(37)

The integration bounds will now be applied and each equation will be simplified. Starting with the (36),

$$\begin{aligned} {\int\limits_{- \infty}^0 {\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} &= {\left[{- R\hbox{e}^{{{\left({\frac{{L^{2}_{a} + 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{0}{{L_{a}}} + \frac{{L_{a}}}{{2R}}} \right)} + R\hbox{e}^{{{0}/{R}}} \hbox{erf}{\left({\frac{{x - 0}}{{L_{a}}}} \right)}} \right]}\\ &\quad - {\left[{- R\hbox{e}^{{{\left({\frac{{L^{2}_{a} + 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{{- \infty}}{{L_{a}}} + \frac{{L_{a}}}{{2R}}} \right)} + R\hbox{e}^{{{{- \infty}}/{R}}} \hbox{erf}{\left({\frac{{x + \infty}}{{L_{a}}}} \right)}} \right]} .\\ \end{aligned}$$
(38)

Noting the following limits

$$\begin{aligned} &{\mathop {\lim}\limits_{x \to \infty}}{\left[{\hbox{erf }{\left(x \right)}} \right]} = 1 \\ &{\mathop {\lim}\limits_{x \to \infty}}{\left[{\hbox{erf }{\left({- x} \right)}} \right]} = - 1 \\ &{\mathop {\lim}\limits_{x \to \infty}}{\left[{\hbox{e}^{{- x}}} \right]} = 0\\ \end{aligned},$$
(39)

the first integral simplifies to

$${\int\limits_{- \infty}^0 {\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} = {\left[{- R\hbox{e}^{{{\left({\frac{{L^{2}_{a} + 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} + \frac{{L_{a}}}{{2R}}} \right)} + R\,\hbox{erf}{\left({\frac{x}{{L_{a}}}} \right)}} \right]}\; - {\left[{- R\hbox{e}^{{{\left({\frac{{L^{2}_{a} + 4xR}}{{4R^{2}}}} \right)}}}} \right]}.$$
(40)

Combining terms and factoring gives

$${\int\limits_{- \infty}^0 {\hbox{e}^{{{{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{{L_{a}}}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} = R\hbox{e}^{{{\left({\frac{{L^{2}_{a} + 4xR}}{{4R^{2}}}} \right)}}} {\left[{1 - \hbox{erf}{\left({\frac{x}{{L_{a}}} + \frac{{L_{a}}}{{2R}}} \right)}} \right]} + R\,\hbox{erf}{\left({\frac{x}{{L_{a}}}} \right)}.$$
(41)

Applying the integration bounds to the second integral, (37), gives

$$\begin{aligned} {\int\limits_0^\infty {\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{R}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} &= {\left[{R\hbox{e}^{{{\left({\frac{{L^{2}_{a} - 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{\infty}{{L_{a}}} - \frac{{L_{a}}}{{2R}}} \right)} - R\hbox{e}^{{- {\infty}/{R}}} \hbox{erf}{\left({\frac{{x - \infty}}{{L_{a}}}} \right)}} \right]} \\ &\quad - {\left[{R\hbox{e}^{{{\left({\frac{{L^{2}_{a} - 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{0}{{L_{a}}} - \frac{{L_{a}}}{{2R}}} \right)} - R\hbox{e}^{{- {0}/{R}}} \hbox{erf}{\left({\frac{{x - 0}}{{L_{a}}}} \right)}} \right]}. \\ \end{aligned}$$
(42)

Using similar limit arguments used in the first integral, the second integral simplifies to

$${\int\limits_0^\infty {\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{R}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} = {\left[{- R\hbox{e}^{{{\left({\frac{{L^{2}_{a} - 4xR}}{{4R^{2}}}} \right)}}}} \right]} - {\left[{R\hbox{e}^{{{\left({\frac{{L^{2}_{a} - 4xR}}{{4R^{2}}}} \right)}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{{L_{a}}}{{2R}}} \right)} - R\,\hbox{erf}{\left({\frac{x}{{L_{a}}}} \right)}} \right]}.$$
(43)

Combining terms and factoring gives

$${\int\limits_0^\infty {\hbox{e}^{{- {{{x}\ifmmode{'}\else$'$\fi}}/{R}}}\,\hbox{erf}{\left({\frac{{x - {x}\ifmmode{'}\else$'$\fi}}{R}} \right)}\,\hbox{d}{x}\ifmmode{'}\else$'$\fi}} = - R\hbox{e}^{{{\left({\frac{{L^{2}_{a} - 4xR}}{{4R^{2}}}} \right)}}} {\left[{1 + \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{{L_{a}}}{{2R}}} \right)}} \right]} + R\,\hbox{erf}{\left({\frac{x}{{L_{a}}}} \right)}.$$
(44)

Substituting the results from the simplification of each integral, (41) and (44), into (35) and simplifying, the measured scalar trace becomes

$$\begin{aligned} \phi _{m} {\left(x \right)} &= \ifmmode\expandafter\bar\else\expandafter\=\fi{\phi} + \frac{{\Delta \phi}}{4}{\left({\hbox{e}^{{{x}/{R}}} \hbox{e}^{{{\left({{{L_{a}}}/{{2R}}} \right)}^{2}}} {\left[{1 - \hbox{erf}{\left({\frac{x}{{L_{a}}} + \frac{{L_{a}}}{{2R}}} \right)}} \right]} + \hbox{erf}{\left({\frac{x}{{L_{a}}}} \right)}} \right)} \\ &\quad + \frac{{\Delta \phi}}{4}{\left({- \hbox{e}^{{- {x}/{R}}} \hbox{e}^{{{\left({{{L_{a}}}/{{2R}}} \right)}^{2}}} {\left[{1 + \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{{L_{a}}}{{2R}}} \right)}} \right]} + \hbox{erf}{\left({\frac{x}{{L_{a}}}} \right)}} \right)}.\\ \end{aligned}$$
(45)

Distributing Δϕ/4 and combining like terms results yields

$$\begin{aligned} \phi _{m} {\left(x \right)} &= \ifmmode\expandafter\bar\else\expandafter\=\fi{\phi} + \frac{{\Delta \phi}}{2}\hbox{erf}{\left({\frac{x}{{L_{a}}}} \right)} + \frac{{\Delta \phi}}{4}\hbox{e}^{{{\left({{{L_{a}}}/{{2R}}} \right)}^{2}}} {\left[{\hbox{e}^{{{x}/{R}}} - \hbox{e}^{{- {x}/{R}}}} \right]} \\ &\quad - \frac{{\Delta \phi}}{4}\hbox{e}^{{{\left({{{L_{a}}}/{{2R}}} \right)}^{2}}} {\left[{\hbox{e}^{{{x}/{R}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} + \frac{{L_{a}}}{{2R}}} \right)} + \hbox{e}^{{- {x}/{R}}}\, \hbox{erf}{\left({\frac{x}{{L_{a}}} - \frac{{L_{a}}}{{2R}}} \right)}} \right]}. \\ \end{aligned}$$
(46)

Replacing the first two terms with ϕ a (x) [see (30)] and letting η a = L a /2R gives the final results shown in (18) and (19):

$$\phi _{m} {\left(x \right)} = \phi _{a} {\left(x \right)} + \frac{{\Delta \phi}}{2}\hbox{e}^{{\eta ^{2}_{a}}} \sinh {\left({\frac{x}{R}} \right)} - \frac{{\Delta \phi}}{4}\hbox{e}^{{\eta ^{2}_{a}}} {\left[{\hbox{e}^{{{x}/{R}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} + \eta _{a}} \right)} + \hbox{e}^{{- {x}/{R}}} \hbox{erf}{\left({\frac{x}{{L_{a}}} - \eta _{a}} \right)}} \right]}.$$
(47)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueschke, N.J., Andrews, M.J. Investigation of scalar measurement error in diffusion and mixing processes. Exp Fluids 40, 165–175 (2006). https://doi.org/10.1007/s00348-005-0030-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-005-0030-8

Keywords

Navigation