Skip to main content
Log in

Microscopic high-speed liquid-metal jets in vacuum

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The operation of microscopic high-speed liquid-metal jets in vacuum has been investigated. We show that such jets may be produced with good stability and collimation at higher speeds than previously demonstrated, provided that the nozzle design is appropriate and that cavitation-induced instabilities are avoided. The experiments with a medium-speed tin jet (u ∼ 60 m/s, Re=1.8×104, Z=2.9×10−3) showed that it operated without any signs of instabilities, whereas the stability of high-speed tin jets (d=30 μm, u=500 m/s, Re=5.6×104, Z=4.7×10−3) has been investigated via dynamic similarity using a water jet. Such a 500-m/s tin jet is required as the anode for high-brightness operation of a novel electron-impact X-ray source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Nozzle radius

c 0 :

Speed of sound in the jet liquid

d :

Jet diameter after contraction

d 0 :

Nozzle diameter

L :

Jet break-up length

Ma:

Mach number, jet-to-sound speed ratio

Re:

Reynolds number, inertial-to-viscous force ratio

T :

Temperature

u :

Jet speed after contraction

u 0 :

Jet speed at the nozzle exit

WeA :

Atmospheric Weber number, inertial-to-surface tension force ratio for the atmosphere

WeL :

Liquid Weber number, inertial-to-surface tension force ratio for the jet liquid

Z:

Ohnesorge number, viscous-to-surface tension force ratio

η0 :

Initial disturbance amplitude on the jet

μ:

Dynamic viscosity

ρA :

Density of the atmosphere

ρL :

Density of the jet liquid

σ:

Surface tension

References

  • Alcock CB (2001) Vapor pressure of the metallic elements. In: Lide DR (eds) Handbook of chemistry and physics, 82nd edn, vol 4. CRC Press, New York, pp 4:134–136

  • Bett KE, Cappi JB (1965) Effect of pressure on the viscosity of water. Nature 207:620–621

    Article  Google Scholar 

  • Blaisot JB, Adeline S (2003) Instabilities of a free falling jet under an internal flow breakup mode regime. Int J Multiph Flow 29:629–653

    Article  MATH  Google Scholar 

  • Blevins RD (1992) Applied fluid dynamics handbook. Krieger Publishing Company, Malabar

    Google Scholar 

  • Bogy DB (1979) Drop formation in a circular liquid jet. Annu Rev Fluid Mech 11:207–228

    Article  Google Scholar 

  • Douglas JF, Gasiorek JM, Swaffield JA (1995) Fluid Mechanics, 3rd edn. Longman Scientific& Technical, Singapore, pp 262–267

    Google Scholar 

  • Eggers (1997) Nonlinear dynamics and breakup of free surface flows. Rev Mod Phys 69:865–928

    Article  Google Scholar 

  • Fenn III, RW, Middleman S (1969) Newtonian jet stability: The role of air resistance. AIChE J 15:379–383

    Article  Google Scholar 

  • Fuchs H, Legge H (1979) Flow of a water jet into vacuum. Acta Astronaut 6:1213–1226

    Article  Google Scholar 

  • Grant RP, Middleman S (1966) Newtonian jet stability. AIChE J 12:669–678

    Article  Google Scholar 

  • Hansson BAM, Rymell L, Berglund M, Hertz HM (2000) A liquid-xenon-jet laser-plasma x-ray and EUV source. Microel Engin 53:667–670

    Article  Google Scholar 

  • Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83:1483–1485

    Article  Google Scholar 

  • Hemberg O, Otendal M, Hertz HM (2004) Liquid-metal-jet anode x-ray tube. Opt Eng 43:1682–1688

    Article  Google Scholar 

  • Jansson PAC, Hansson BAM, Hemberg O, Otendal M, Holmberg A, de Groot J, Hertz HM (2004) Liquid-metal-jet laser-plasma extreme ultraviolet generation. Appl Phys Lett 84:2256–2258

    Article  Google Scholar 

  • Konkachbaev AI, Morley NB, Gulec K, Sketchley T (2000) Stability and contraction of a rectangular liquid metal jet in a vacuum environment. Fusion Eng Des 51–52:1109–1114

    Article  Google Scholar 

  • Korn G, Thoss A, Stiel H, Vogt U, Richardson M, Elsaesser T, Faubel M (2002) Ultrashort 1-kHz laser plasma hard x-ray source. Opt Lett 27:866–868

    Article  Google Scholar 

  • Leroux S, Dumouchel C, Ledoux M (1996) The stability curve of Newtonian liquid jets. Atom Sprays 6:623–647

    Google Scholar 

  • Leroux S, Dumouchel C, Ledoux M (1997) The break-up length of laminar cylindrical liquid jets. Modification of Weber’s theory. Int J Fluid Mech Res 24:428–438

    Google Scholar 

  • Lin SP, Lian ZW (1990) Mechanisms of the breakup of liquid jets. AIAA J 28:120–126

    Google Scholar 

  • Lin SP, Reitz RD (1998) Drop and spray formation from a liquid jet. Annu Rev Fluid Mech 30:85–105

    Article  MathSciNet  Google Scholar 

  • Markov BG (1975) The speed of ultrasound and the thermophysical properties of the liquid metals Sn, Pb, Cd and of their binary alloys Pb-Sn and Pb-Cd. High Temp 13:1027–1030

    Google Scholar 

  • McCarthy MJ, Molloy NA (1974) Review of stability of liquid jets and the influence of nozzle design. Chem Eng J 7:1–20

    Article  Google Scholar 

  • Middleman S, Gavis J (1961) Expansion and contraction of capillary jets of Newtonian liquids. Phys Fluids 4:355–359

    Article  MATH  Google Scholar 

  • Muntz EP, Orme M (1987) Characteristics, control, and uses of liquid streams in space. AIAA J 25:746–756

    Article  Google Scholar 

  • Phinney RE (1972) Stability of a laminar viscous jet–The influence of the initial disturbance level. AIChE J 18:432–434

    Article  Google Scholar 

  • Phinney RE (1973) Stability of a laminar viscous jet–The influence of an ambient gas. Phys Fluids 16:193–196

    Article  MATH  Google Scholar 

  • Phinney RE, Humphries W (1973) Stability of a laminar jet of viscous liquid–Influence of nozzle shape. AIChE J 19:655–657

    Article  Google Scholar 

  • Ricci E, Nanni L, Vizza M, Passerone A (1997) Dynamic surface tension measurements of liquid metals. In: Eustathopoulos N, Sobczak N (eds) Proceedings of international conference on high temperature capillarity, pp 188–193

  • Rymell L, Berglund M, Hertz HM (1995) Debris-free single-line laser-plasma x-ray source for microscopy. Appl Phys Lett 66:2625–2627

    Article  Google Scholar 

  • Smith SWJ, Moss H (1917) Mercury jets. Proc Roy Soc A 93:373–393

    Article  Google Scholar 

  • Sterling AM, Sleicher CA (1975) The instability of capillary jets. J Fluid Mech 68:477–495

    Article  MATH  Google Scholar 

  • Thresh HR, Crawley AF (1970) The viscosities of lead, tin, and Pb-Sn alloys. Metall Trans 1:1531–1535

    Article  Google Scholar 

  • Thresh HR, Crawley AF, White DWG (1968) The densities of liquid tin, lead, and tin-lead alloys. Trans Metall Soc AIME 242:819–822

    Google Scholar 

  • Wallace DB, Hayes DJ (1997) Solder jet technology update. Proc SPIE 3235:681–684

    Google Scholar 

  • Weber K (1931) Zum Zerfall eines Flüssigkeitsstrahles. Z angew Math Mech 11:136–159

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the fluid-mechanics discussions with G. Amberg and H. Alfredsson, as well as the experimental assistance of J. Thoresen. This work has been supported by the Swedish Agency for Innovation Systems and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Otendal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otendal, M., Hemberg, O., Tuohimaa, T.T. et al. Microscopic high-speed liquid-metal jets in vacuum. Exp Fluids 39, 799–804 (2005). https://doi.org/10.1007/s00348-005-0013-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-005-0013-9

Keywords

Navigation