Skip to main content
Log in

Drop impact on a hot surface: effect of a polymer additive

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The impact of a drop on a hot surface is studied for Weber numbers between 20 and 220, and wall temperatures between 120 and 180°C. Drops of pure water are compared with drops of a dilute polyethylene oxide water solution (0.02% M). The additive is shown to inhibit drop splashing, the ejection of secondary droplets and mist formation. As previously observed, the polymer can also prevent drops from bouncing off a cold wall. This is no longer true if the wall is above the dynamic Leidenfrost temperature, which is lower for the polymer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ca :

capillary number (-)

d :

drop diameter (m)

D :

lamella diameter (m)

k :

coefficient in Eq. 3 (-)

g :

gravity acceleration (m/s2)

h :

fall height (m)

m :

drop mass (kg)

Oh :

Ohnesorge number (-)

R*:

mean radius of curvature of the drop (m)

R1, R2:

principal radii of curvature of the drop surface (m)

t :

time (s)

T :

temperature (°C)

u :

perpendicular component of the impact velocity (m/s)

u r :

retraction velocity of the lamella (m/s)

v :

velocity of secondary droplets (m/s)

w :

velocity of the fluid inside the drop (m/s)

We :

Weber number (-)

δ :

secondary droplet diameter (m)

ε̇ :

rate of elongation (s−1)

η :

viscosity (Pa s)

η e :

elongational viscosity (Pa s)

ρ :

density (kg/m3)

σ :

surface tension (N/m)

τ :

stress (Pa)

References

  • Bazilevskii AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci Ser A+ 43:716–726

    Google Scholar 

  • Bergeron V (2003) Designing intelligent fluids for controlling spray applications. CR Phys 4:211–219

    Article  CAS  Google Scholar 

  • Bergeron V, Quéré D (2001) Water droplets make an impact. Phys World 14(5):27–31

    Google Scholar 

  • Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405:772–775

    Article  CAS  PubMed  Google Scholar 

  • Bergeron V, Martin J-Y, Vovelle L (1998) Utilisation de polymères comme agents anti-rebond dans des formulations mises en oeuvre en milieux aqueux. French Patent Application 9810471. International Extension PCT/FR99/02002 (1999)

  • Bernardin JD, Stebbins CJ, Mudawar D (1997) Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Int J Heat Mass Transfer 40:247–267

    Article  Google Scholar 

  • Celata GP, Mariani A (2003) Critical heat flux, post-CHF heat transfer and their augmentation. In: Bertola V (ed), Modelling and experimentation in two-phase flow. CISM Courses and Lectures No. 450, Springer, Berlin Heidelberg New York

  • Crooks R, Boger DV (2000) Influence of fluid elasticity on drops impacting on dry surfaces. J Rheol 44:973–996

    Article  CAS  Google Scholar 

  • Crooks R, Cooper-White JJ, Boger DV (2001) The role of dynamic surface tension and elasticity on the dynamics of drop impact. Chem Eng Sci 56:5575–5592

    Article  CAS  Google Scholar 

  • Cui Q, Chandra S, McCahan S (2001) The effects of dissolving gases or solids in water droplets boiling on a hot surface. J Heat Transfer 123:719–725

    Article  CAS  Google Scholar 

  • De Gennes P-G (1974) Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60: 5030–5042

    Article  Google Scholar 

  • De Gennes P-G (1985) Wetting: statics and dynamics. Rev Mod Phys 57: 827–863

    Article  Google Scholar 

  • Frohn A, Roth N (2000) Dynamics of droplets. Springer, Berlin Heidelberg New York

  • Fuller GG, Cathey CA, Hubbard B, Zebrowski BE (1987) Extensional viscosity measurements for low-viscosity fluids. J Rheol 31:235–249

    Article  CAS  Google Scholar 

  • Gottfried BS, Lee CJ, Bell KJ (1966) The Leidenfrost phenomenon: film boiling of liquid droplets on a flat plate. Int J Heat Mass Transfer 9:1167–1188

    Article  CAS  Google Scholar 

  • Hernández Cifre JG, García de la Torre J (2001) Kinetic aspects of the coil–stretch transition of polymer chains in dilute solution under extensional flow. J Chem Phys 115:9578–9584

    Article  Google Scholar 

  • Inada S, Yang W-J (1993) Mechanism of miniaturization of sessile drops on heated surfaces. Int J Heat Mass Transfer 36:1505–1515

    CAS  Google Scholar 

  • Keller A, Odell JA (1985) The extensibility of macromolecules in solution—a new focus for macromolecular science. Colloids Polym Sci 263:181–201

    CAS  Google Scholar 

  • King MD, Yang JC, Chien WS, Grosshandler WL (1997) Evaporation of a small water droplet containing an additive. In: Proceedings of the 32nd ASME National Heat Transfer Conference, Baltimore, MD, 8–12 August. ASME, New York

  • Levich VN (1962) Physicochemical hydrodynamics. Prentice Hall, Upper Saddle River, NJ

  • Macosko CW (1994) Extensional rheometry. In: Rheology: principles, measurements, and applications. Wiley–VCH, New York, p 326

  • Manzello SL, Yang JC (2002) On the collision dynamics of a water droplet containing an additive on a heated solid surface. Proc R Soc Lond A 458:2417–2444

    CAS  Google Scholar 

  • Mourougou-Candoni N, Prunet-Foch B, Legay F, Vignes-Adler M, Wong K (1997) Influence of dynamic surface tension on the spreading of surfactant solution droplets impacting onto a low-surface-energy solid substrate. J Colloid Interface Sci 192:129–141

    Article  CAS  PubMed  Google Scholar 

  • Naber JD, Farrel PV (1993) Hydrodynamics of drop impingement on a heated surface. SAE Technical Paper No 930919

  • Nieuwstadt FTM, den Toonder JMJ (2001) Turbulent drag reduction by additives: a review. In: Soldati A, Monti R (ed), Turbulence structure and modulation. CISM Courses and Lectures No 415. Springer, Berlin Heidelberg New York

  • Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynam Res 12:61–93

    Article  Google Scholar 

  • Rein M (1999) The reflection of drops off hot surfaces. Z Angew Math Mech 79:743–744

    Google Scholar 

  • Rein M (2003a) Drop-surface interactions. CISM Courses and Lectures No 456. Springer, Berlin Heidelberg New York

  • Rein M (2003b) Interactions between drops and hot surfaces. In: Rein M (ed), Drop–surface interactions. CISM Courses and Lectures No 456. Springer, Berlin Heidelberg New York

  • Rioboo R, Marengo M, Tropea C (2001) Outcomes from a drop impact on solid surfaces. Atomiz Sprays 11:155–165

    CAS  Google Scholar 

  • Roisman IV, Rioboo R, Tropea C (2002) Normal impact of liquid drops on a dry surface: model for spreading and receding. Proc R Soc Lond A 458:1411–1430

    Article  CAS  Google Scholar 

  • Rozhkov A, Prunet-Foch B, Vignes-Adler M (2003) Impact of drops of polymer solutions on small targets. Phys Fluids 15:2006–2019

    Article  CAS  Google Scholar 

  • Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer solutions. J Non-Newtonian Fluid Mech 40:271–280

    Google Scholar 

  • Strobl G (1997) The physics of polymers, 2nd edn. Springer, Berlin Heidelberg New York

  • Thames RE (1997) Composition and methods for firefighting hydrocarbon fires, US Patent No 5945026

  • Trouton FT (1906) On the coefficient of viscous traction and its relation to that of viscosity. Proc R Soc Lond A 77:426–440

    Google Scholar 

  • Vovelle L, Bergeron V, Martin JY (2001) Use of polymers as sticking agents. World Patent No 0008926 (EP1104988)

  • Watchers LHJ, Westerling NAY (1966) The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem Eng Sci 21:1047–1056

    Article  Google Scholar 

  • Worthington AM (1876) On the form assumed by drops of liquids falling vertically on a horizontal plate. Proc R Soc Lond 25:261–271

    Google Scholar 

  • Yao S-C, Cai KY (1988) The dynamics and Leidenfrost temperature of drops impinging on a hot surface at small angles. Exp Therm Fluid Sci 1:363–371

    Article  Google Scholar 

  • Zhang XG, Basaran OA (1997) Dynamic surface tension effects in impact of a drop with a solid surface. J Colloid Interface Sci 187:166–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support from the European Union (HPMF-CT-2002–01938) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bertola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertola, V. Drop impact on a hot surface: effect of a polymer additive. Exp Fluids 37, 653–664 (2004). https://doi.org/10.1007/s00348-004-0852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-004-0852-9

Keywords

Navigation