Skip to main content
Log in

New local measurements of hydrodynamics in porous media

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this paper, a measurement system is used to carry out local hydrodynamic measurements at the pore scale of a fixed-bed reactor. It consists of four microelectrodes placed on the inner wall of four spheres mounted in tetrahedral form, thus constituting a pore of the fixed bed. Three flow regimes (laminar, inertial and turbulent-like) are identified by the analysis of the signal fluctuations (velocity gradient). The flow structures are characterised by means of the correlation (auto- and cross-) function analysis, and a closure equation required in modelling and simulation is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A e :

effective area of electrode, m2

C L :

concentration, mol/m3

C xx :

auto-correlation function of signal x

d ip :

distance between two probes, m

dm :

average structure dimension, m

dM :

maximum structure size, m

D :

diffusion coefficient, m2/s

d e :

electrode diameter, m

f :

frequency, s−1

F :

Faraday constant, 96,500 C/equi

F D(L–S) :

liquid–solid momentum exchange term, kg/m2/s2

g :

gravity, 9.81 m/s2

H :

transfer function

I :

limiting current, A

L :

liquid flow rate, kg/m2/s

P :

static pressure, Pa

P xx :

Power spectral density of signal x

Re p :

\( = \frac{{\rho _{{\text{L}}} u_{0} d_{{\text{p}}} }} {\mu } \), particle Reynolds number

S :

velocity gradient, s−1

t :

time, s

T c :

integral coherence time, s

u L :

liquid phase velocity, m/s

uL :

fluctuation of liquid phase velocity, m/s

α L :

fluid volume fraction

ε :

porosity

μ :

liquid kinematic viscosity, Pa s

ν e :

number of electrons involved in the electrochemical reaction

ρ L :

liquid phase specific gravity, kg/m3

ρ 0 :

local liquid phase specific gravity, kg/m3

θ :

time lag (in correlation functions), s

θ c :

coherence time, s

τ :

tortuosity

ω :

dimensionless frequency

References

  • Antohe BV, Lage JL (1997) A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int J Heat Mass Transfer 40:3013–3024

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York

  • Benenati RF, Brosilow CB (1962) Void fraction distribution in beds of spheres. AIChE J 8:359–361

    CAS  Google Scholar 

  • Deslouis C, Gil O, Tribollet B (1993) Frequency response of small electrodes to hydrodynamic or to potential perturbations. Electrochem Acta 38:1847–1856

    Article  CAS  Google Scholar 

  • Jolls KR, Hanratty TJ (1966) Transition to turbulence for flow through a dumped bed of spheres. Chem Eng Sci 21:1185–1190

    Article  CAS  Google Scholar 

  • Kashiwa BA, Rauenzahn RM (1994) A multimaterial formalism. In: Numerical methods in multiphase flows. ASME, New York, pp 149–157

  • Latifi MA, Midoux N, Storck A, Gence JN (1989) The use of micro-electrodes in the study of the flow regimes in a packed bed reactor with single phase liquid flow. Chem Eng Sci 44:2501–2508

    Article  CAS  Google Scholar 

  • Naderifar A (1995) Étude expérimentale locale et globale du transfert de matière liquide/solide à la paroi d’un réacteur à lit fixe. PhD thesis, Institut National Polytechnique de Lorraine, France

  • Nakoryakov VE, Kashinsky ON, Kozmenko BK (1983) Electrochemical method for measuring turbulent characteristics of gas–liquid flows. In: Measuring techniques in gas–liquid two-phase flows, IUTAM Symposium, Nancy, France, pp 695–721

  • Reiss LR (1962) Investigation of turbulence near a pipe wall using a diffusion controlled electrolyte reaction on a circular electrode. PhD thesis, University of Illinois, Urbana, USA

  • Reiss LR, Hanratty TJ (1963) An experimental study of the unsteady nature of viscous sublayer. AIChE J 9:154–160

    CAS  Google Scholar 

  • Rode S (1992) Analyse spatio-temporelle des phénomènes hydrodynamiques et de transfert de matière au sein d’un réacteur à lit fixe opérant en écoulement monophasique de liquide ou en co-courant vers le bas de gaz et de liquide; mise en oeuvre de la technique des microsondes électrochimiques. PhD thesis, Institut National Polytechnique de Lorraine, France

  • Seguin D, Montillet A, Comiti J (1998a) Experimental characterisation of flow regimes in various porous media—I: Limit of laminar flow regime. Chem Eng Sci 53:3751–3761

    Google Scholar 

  • Seguin D, Montillet A, Comiti J, Huet F (1998b) Experimental characterisation of flow regimes in various porous media—II: Transition to turbulent regime. Chem Eng Sci 53:3897–3909

    Article  CAS  Google Scholar 

  • Storck A, Coeuret F (1984) Éléments de génie électrochimique. Lavoisier, Paris, France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Latifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesage, F., Midoux, N. & Latifi, M.A. New local measurements of hydrodynamics in porous media. Exp Fluids 37, 257–262 (2004). https://doi.org/10.1007/s00348-004-0811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-004-0811-5

Keywords

Navigation