Skip to main content
Log in

Potential benefit from the application of autoregressive spectral estimators in the analysis of homogeneous and isotropic turbulence

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Spectral estimators other than the conventional periodogram technique exist. The autoregressive (AR) method is one of the alternative spectral estimation procedures currently available. The technique is particularly adapted to the detection of narrow-band components in the lower frequency domain for short data records. However, the technique may also be used in the analysis of more “standard” turbulent flow configurations where no specific wave modes are necessarily expected. An example is given here in the case of homogeneous and isotropic turbulence developing freely downstream of a heated grid. The results reported in this paper are in good agreement with earlier findings and would thus tend to confirm the idea that the technique might be used successfully over a wider range of signals in fluid dynamics. They provide us with the opportunity to highlight one particular additional benefit of the AR method with respect to the identification of spectral regions with constant slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Freely available at http://www.tn.tudelft.nl/mmr/

References

  • Agator JM, Doan KS (1983) Analyse spectrale du champ thermique d’un panache turbulent à symétrie axiale. CR Acad Sci Paris 296:119–1122

    Google Scholar 

  • Broersen MT (2000a) Fact and fiction in spectral analysis. IEEE Trans Instrum Meas 49:766–772

    Article  Google Scholar 

  • Broersen MT (2000b) Finite sample criteria for autoregressive order selection. IEEE Trans Instrum Meas 48:3550–3558

    Article  Google Scholar 

  • Broersen MT (2002) Automatic spectral analysis with time series models. IEEE Trans Instrum Meas 51:211–216

    Article  Google Scholar 

  • Burg JP (1967) Maximum entropy spectral analysis. In: Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City, OK, 31 October

  • Champagne FR, Sletcher CA, Wehnaann OH (1967) Turbulence measurements with inclined hot-wires. J Fluid Mech 28:153–175

    Google Scholar 

  • Comte-Bellot G, Corrsin S (1971) Simple Eulerian time-correlation of full- and narrow-band velocity signals in grid-generated “isotropic” turbulence. J Fluid Mech 48:273–337

    Google Scholar 

  • Deardoff JW, Willis GE (1967) Investigation of turbulent thermal convection between horizontal plates. J Fluid Mech 28:675–704

    Google Scholar 

  • Doan KS (1977) Contribution à l’étude de la zone de transition et de la zone de turbulence établie dans un écoulement de convection naturelle sur une plaque plane verticale isotherme. Thèse de doctorat d’état, Université de Poitiers, France

  • Elicer-Cortés JC, Tapia J, Pavageau M (2003) Detection and estimation of the degree of temperature scales in a turbulent thermal plume by ultrasound scattering. Int Commun Heat Mass Transfer 30:931–944

    Article  Google Scholar 

  • Elicer-Cortés JC, Contreras R, Boyer D, Pavageau M, Hernández RH (2004) Temperature spectra from a turbulent thermal plume by ultrasound scattering. Exp Thermal Fluid Sci (in press)

  • Favre A (1965a) Equations des gaz turbulents compressibles. J Méc 3:361–390

    Google Scholar 

  • Favre A (1965b) Equations des gaz turbulents compressibles. J Méc 4:391–421

    Google Scholar 

  • Fingerson LM, Freymuth P (1983) Thermal anemometers. In: Goldstein RJ (ed.) Fluid mechanics measurements. Hemisphere, Washington D.C., pp 99–154

  • Jung YW, Park SO (2001) Application of the autoregressive method to the spectral analysis of a flow signal. Exp Fluids 31:608–614

    Article  Google Scholar 

  • Kay S, Marple S (1981) Spectrum analysis: a modern perspective. Proc IEEE 69:1380–1418

    Google Scholar 

  • Kotsovinos NE (1991) Turbulence spectra in free convection flow. Phys Fluids A3:163–167

    Google Scholar 

  • Le Carpentier E (1987) Approche à la classification automatique de signaux aléatoires. DEA Report, Université de Nantes, Ecole Nationale Supérieure de Mécanique, 69 pp

  • Lin SC, Lin SC (1973) Study of strong temperature mixing in subsonic grid turbulence. Phys Fluids 16:1587–1598

    CAS  Google Scholar 

  • Mestayer P, Chambaud P (1979) Some limitations to measurements of turbulence micro-structure with hot and cold wires. Boundary Layer Met 16:311–329

    Google Scholar 

  • Millon F, Paranthoen P, Trinité M (1978) Influence des échanges thermiques entre le capteur et ses supports sur la mesure des fluctuations de température dans les écoulements turbulents. Int J Heat Mass Transfer 21:1–6

    Article  Google Scholar 

  • Mills RR, Kistler AL, O’Brien V, Corrsin S (1958) Turbulence and temperature fluctuations behind a heated grid. NACA TN No. 4288

  • Pavageau M (1994) Etude expérimentale de la turbulence de grille en convection naturelle—analyse des effets non-Boussinesq. PhD Thesis, Ecole Centrale et Univesité de Nantes, Nantes, France

  • Pavageau M, Rey C (2002) Observation of volume variation effects in turbulent free convection. Int J Heat Mass Transfer 45:181–192

    Article  Google Scholar 

  • Petit C, Gajan P, Lecordier JC, Paranthoen P (1982) Frequency response of wire thermocouple. J Phys Eng Sci Instrum 15:760–764

    Article  CAS  Google Scholar 

  • Poinsot T, Trouve A, Veynante D, Candel S, Esposito E (1987) Vortex driven acoustically coupled combustion instabilities. J Fluid Mech 177:265–292

    CAS  Google Scholar 

  • Rey C, Blaquart B, Boudjemaa A (1991) Experiments on free convection turbulence. In: Proceedings of the Second World Conference on Experimental heat transfer, fluid mechanics and thermodynamics, Dubrovnik, Yugoslavia

  • Rey C (2000) Analyse des effets de variation de volume des gaz dans les équations générales de bilan. Int J Heat Mass Transfer 43:4311–4326

    Article  Google Scholar 

  • Rey C, Benjeddou S (2004a) Une alternative aux hypotheses de Boussinesq des gaz chauds: l’approximation polytropique. C R Acad Sci Paris (in press)

  • Rey C, Benjeddou S (2004b) Application de l’approximation polytropique à la turbulence statistique en moyenne de Favre. C R Acad Sci (in press)

  • Sreenivasan KR, Tavoularis S, Henry R, Corrsin S (1980) Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech 100:597–621

    Google Scholar 

  • Veynante D, Candel S (1988a) A promising approach in LDV data processing: signal reconstruction in non-linear spectral analysis. Signal Proc 14:295–300

    Article  Google Scholar 

  • Veynante D, Candel S (1988b) Application of non-linear spectral analysis and signal reconstruction to laser velocimetry. Exp Fluids 6:534–540

    Google Scholar 

  • Veynante D (2002) Survey of signal processing techniques. Lecture series on post-processing of experimental and numerical data, Von Karman Institute, pp 1–47

  • Warhaft Z, Lumley JL (1978) An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J Fluid Mech 88:659–684

    Google Scholar 

  • Wyngaard JC (1968) Measurement of small-scale turbulence structure with hot-wires. J Sci Instrum (J Phys E, Sér 2) 1:1105–1108

    Google Scholar 

  • Yeh TT, Van Atta CW (1973) Spectral transfer of scalar and velocity fields in heated-grid turbulence. J Fluid Mech 58:233–261

    Google Scholar 

  • Zhou T, Antonia RA, Lasserre JJ, Coantic M, Anselmet F (2003) Transverse velocity and temperature derivative measurements in grid turbulence. Exp Fluids 34:449–459

    Google Scholar 

Download references

Acknowledgements

The experiments illustrated here were performed at the Ecole Centrale de Nantes. The support of the CNRS PhD grant scheme is gratefully acknowledged in this respect. The analysis reported was supported by CONICYT under grant FONDECYT No. 1010135. The authors would like to express their sincere thanks to Professor G. Le Vey (Département Automatique-Productique, EMN) for his help and advice during revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pavageau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavageau, M., Rey, C. & Elicer-Cortes, JC. Potential benefit from the application of autoregressive spectral estimators in the analysis of homogeneous and isotropic turbulence. Exp Fluids 36, 847–859 (2004). https://doi.org/10.1007/s00348-003-0767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0767-x

Keywords

Navigation