Skip to main content
Log in

Experimental determination of the free-stream disturbance field in a short-duration supersonic wind tunnel

  • Original Paper
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The free-stream disturbance field in a short-duration supersonic wind tunnel is investigated at a nominal Mach number of Ma=2.54. A specially designed constant-temperature anemometer is used to be able to draw a complete fluctuation diagram within one wind tunnel run (testing time: 120 ms). It is shown that the disturbance field is dominated by acoustic waves radiated from the turbulent boundary layer on the nozzle and the sidewalls, like in conventional supersonic wind tunnels. The acoustic field appears to be composed of highly localized shivering Mach waves superimposed on a background of eddy Mach waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a,b.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. A similar approach was recently followed by Comte-Bellot and Sarma (2001) with a constant voltage anemometer (CVA) in a supersonic boundary layer.

  2. This is equivalent to assuming that G depends only on τ, which is sufficient for the present purpose.

  3. This value is close to the average pressure fluctuation at x/l=0.76: (<p>)0.76=(<p>EMW)0.76=0.130%.

  4. The boundary layer thickness was computed with the code of Harris and Blanchard (1982) assuming laminar–turbulent transition at the nozzle throat. The computational results agree very well with measurements at the nozzle output.

Abbreviations

a :

constant in the thermal conductivity/temperature power law of air: k/k r=(T/T r)a (dimensionless)

b :

constant in the viscosity/temperature power law of air: μ/μ r=(T/T r)b (dimensionless)

Be :

bandwidth (Hz)

A, B :

constants in the wire heat transfer relation (Eq. (7), dimensionless)

α :

\( \left( {1 + {{\gamma - 1} \over 2}Ma^2 } \right)^{ - 1} \) (dimensionless)

c p :

specific heat at constant temperature (kJ/kg K)

c v :

specific heat at constant volume (kJ/kg K)

δ :

boundary layer thickness (m)

D :

function of the overheat ratio (dimensionless)

e :

anemometer output voltage (V)

ε F :

end-loss attenuation factor for mass flow sensitivity (dimensionless)

ε G :

end-loss attenuation factor for total temperature sensitivity (dimensionless)

η :

recovery factor (dimensionless)

f :

frequency (Hz)

f 1 :

normalized frequency (dimensionless)

F :

anemometer nondimensional sensitivity to mass flow fluctuations (dimensionless)

G :

anemometer nondimensional sensitivity to total temperature fluctuations (dimensionless)

F AC :

ε F ×F (dimensionless)

GAC :

ε G ×G (dimensionless)

f,g :

functions in the wire heat transfer relation (Eq. (7), dimensionless)

γ :

c p/c v (dimensionless)

k :

thermal conductivity of air (W/m K)

k r :

thermal conductivity of air at temperature T r (W/m K)

k θ :

anemometer sensitivity to total temperature fluctuations (V/K)

l :

Mach rhombus half-length (Fig. 1, m)

Ma :

Mach number (dimensionless)

μ :

viscosity of air (kg/m·s)

μ r :

viscosity of air at temperature Tr (kg/m·s)

n :

constant in the wire heat transfer relation (Eq. (7), dimensionless)

Nu :

Nusselt number (dimensionless)

p :

pressure (Pa)

p 0 :

stagnation pressure (Pa)

r :

F/G (dimensionless)

R :

unit Reynolds number (1/m)

Re :

Reynolds number (dimensionless)

\( R_{{\rho u,T_{0} }} \) :

correlation coefficient between mass flow and total temperature fluctuations (dimensionless)

ρ :

density (kg/m3)

T :

time span (s)

T 0 :

total temperature (K)

T r :

reference temperature (K)

T w :

hot wire temperature (K)

τ :

overheat ratio: τ=(T wηT 0)/T 0 (dimensionless)

Θ :

−<e>/G (%)

u :

x-component of the flow velocity (m/s)

u s :

source velocity at acoustic origin (m/s)

u :

inviscid velocity at acoustic origin (m/s)

x :

wind tunnel axis (Fig. 1, m)

x̄:

temporal mean value of a fluctuating quantity x

x′:

fluctuating part of x: x′=xx̄

x 'RMS :

root mean square of x

<x>:

x 'RMS /x̄

ε(X):

relative uncertainty of a random variable X

References

  • Anders JB, Stainback PC, Beckwith IE (1978) A new technique for reducing test section noise in supersonic wind tunnels. AIAA paper 78-817

  • Anders JB, Stainback PC, Beckwith IE (1980) New technique for reducing test section noise in supersonic wind tunnels. AIAA J 18:5–6

    Google Scholar 

  • Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures. Wiley Interscience, New York

    Google Scholar 

  • Bergstrom ER, Raghunatan S (1977) Nonstationarity in gun tunnel flows. AIAA J 15:1362–1364

    Google Scholar 

  • Bestion D, Gaviglio J, Bonnet JP (1983) Comparison between constant-current and constant-temperature hot-wire anemometers in high speed flows. Rev Sci Instrum 54:1513–1524

    Article  Google Scholar 

  • Comte-Bellot G, Sarma GR (2001) Constant Voltage anemometer practice in supersonic flows. AIAA J 39:261–270

    Google Scholar 

  • Freymuth P (1979) Engineering estimate of heat conduction loss in constant temperature thermal sensors. TSI Quart 5:3–9

    Google Scholar 

  • Freymuth P, Fingerson LM (1997) Hot-wire anemometry at very high frequencies: effect of electronic noise. Meas Sci Technol 8:115–116

    Article  CAS  Google Scholar 

  • Gaisbauer U, Knauss H, Wagner S, Weiss J (2000) The meaning of disturbance fields in transition experiments and their detection in the test section flow of a short-duration wind tunnel. In: Wagner S, Rist U, Heinemann J, Hiblig R (eds) New results in numerical and experimental fluid mechanics III, notes on numerical fluid mechanics, vol 77. pp 403–410

  • Gaviglio J (1978) Sur les méthodes de l'anémométrie par fil chaud des écoulements compressibles de gaz. J Mécanique Appliquée 2:449–498

  • Harris JE, Blanchard DK (1982) Computer program for solving laminar, transitional or turbulent compressible boundary layer equations for two dimensional and axisymetric flow. NASA tech memo 83207

  • Harvey WD, Stainback PC, Anders JB, Cary AM (1975) Nozzle wall boundary-layer transition and freestream disturbances at Mach 5. AIAA J 13:307–314

    Google Scholar 

  • Knauss H, Riedel R, Wagner S (1999) The Shock Wind Tunnel of Stuttgart University, a facility for testing hypersonic vehicles. AIAA paper 99-4959

  • Kosinov AD, Semionov NV, Yermolaev YG (1999) Disturbances in test section of T-325 supersonic wind tunnel. ITAM preprint 6-99

  • Kovásznay LSG (1950) The Hot-wire anemometer in supersonic flow. J Aeronaut Sci 17:565–573

    Google Scholar 

  • Kovásznay LSG (1953) Turbulence in supersonic flow. J Aeronaut Sci 20:657–674

    Google Scholar 

  • Laufer J (1954) Factors affecting transition Reynolds numbers on models in supersonic wind tunnels. J Aeronaut Sci 21:497–498

    Google Scholar 

  • Laufer J (1961) Aerodynamic noise in supersonic wind tunnels. J Aeronaut Sci 28:685–692

    Google Scholar 

  • Laufer J (1962) Sound radiation from a turbulent boundary layer. In: Mécanique de la Turbulence. Centre National de la Recherche Scientifique, Paris, pp 381–393

  • Laufer J (1964) Some statistical properties of the pressure field radiated by a turbulent boundary layer. Phys Fluids 7:1191–1197

    Google Scholar 

  • Morkovin MV (1956) Fluctuations and hot-wire anemometry in compressible flows. AGARDograph 24

  • Morkovin MV (1957) On transition experiments at moderate supersonic speeds. J Aeronaut Sci 24:480–486

    Google Scholar 

  • Morkovin MV (1959) On supersonic wind tunnels with low free stream disturbances. J Appl Mech 26:319–323

    Google Scholar 

  • Morris SC, Foss JF (2003) Transient thermal response of a hot-wire anemometer. Meas Sci Technol 14:251–259

    Article  CAS  Google Scholar 

  • Riedel R (2000) Erprobung eines Stoßwindkanals zur Untersuchung des laminar-turbulenten Umschlags in Überschallgrenzschichten. Dissertation, Institut für Aerodynamik und Gasdynamik, Stuttgart University

  • Schneider SP (2001) Effect of high-speed tunnel noise on laminar–turbulent transition. J Spacecrafts Rockets 38:323–333

    Google Scholar 

  • Schneider SP, Haven CE (1995) Quiet-flow Ludwieg tube for high-speed transition research. AIAA J 33:688–693

    Google Scholar 

  • Smith DR, Smits AJ (1993) Simultaneous measurement of velocity and temperature fluctuations in the boundary layer of a supersonic flow. Exp Thermal Fluid Sci 7:221–229

    Article  Google Scholar 

  • Smits AJ, Dussauge JP (1989) Hot-wire anemometry in supersonic flows. AGARDograph 315, pp 5.1–5.14

  • Smits AJ, Hayakawa K, Muck KC (1983) Constant temperature hot-wire anemometer practice in supersonic flows. Exp Fluids 1:83–92

    Google Scholar 

  • Smits AJ, Perry AE (1980) The effect of varying resistance ratio on the behaviour of constant-temperature hot-wire anemometers. J Phys E 13:451–456

    Article  Google Scholar 

  • Wagner RD (1971) Hot wire measurements of freestream and shock layer disturbances. AIAA J 9:2468–2469

    Google Scholar 

  • Weise A, Schwarz G (1973) Der Stoßwindkanal des Instituts für Aerodynamik und Gasdynamik der Universität Stuttgart. Z Flugwissenschaft 21:121–130

    Google Scholar 

  • Weiss J (2002) Experimental determination of the free stream disturbance field in the short duration supersonic wind tunnel of Stuttgart University. Dissertation, Institut für Aerodynamik und Gasdynamik, Stuttgart University (http://elib.uni-stuttgart.de/opus/volltexte/2002/1230)

  • Weiss J, Knauss H, Wagner S (2001a) Method for the determination of frequency response and signal to noise ratio for constant-temperature hot-wire anemometers. Rev Sci Instrum 72:1904–1909

    Article  CAS  Google Scholar 

  • Weiss J, Knauss H, Wagner S, Chokani N, Comte-Bellot G, Kosinov AD (2003) Comparative measurements in a Ma=2.54 flow using constant-temperature and constant-voltage anemometry. In: AIAA 03-1277, 41st AIAA aerospace sciences meeting and exhibit, 6–9 January 2003, Reno NV

  • Weiss J, Kosinov AD, Knauss H, Wagner S (2001b) Constant temperature hot-wire measurements in a short duration supersonic wind tunnel. Aeronaut J 105:435–441

    Google Scholar 

Download references

Acknowledgements

This work was performed within the Partial Project TPC5 of the Special Research Group SFB259, established at Stuttgart University and financed by the German Research Foundation (DFG). The authors are grateful to Dr. Boris Smorodsky for his computation of the nozzle boundary layer thickness, and to Karl-Heinz Laicher and Manfred Giess for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, J., Knauss, H. & Wagner, S. Experimental determination of the free-stream disturbance field in a short-duration supersonic wind tunnel. Exp Fluids 35, 291–302 (2003). https://doi.org/10.1007/s00348-003-0623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0623-z

Keywords

Navigation