Skip to main content
Log in

Bewertung von Risikofaktoren für das Auftreten des Offenwinkelglaukoms

Leitlinie von DOG und BVA

Assessment of risk factors for the occurrence of open angle glaucoma

Guidelines of the German Ophthalmological Society and the Professional Association of Ophthalmologists in Germany

  • Leitlinien, Stellungnahmen und Empfehlungen
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

An Erratum to this article was published on 09 December 2020

This article has been updated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Change history

  • 09 December 2020

    Ein Erratum zu dieser Publikation wurde veröffentlicht: <ExternalRef><RefSource>https://doi.org/10.1007/s00347-020-01169-4</RefSource><RefTarget Address="10.1007/s00347-020-01169-4" TargetType="DOI"/></ExternalRef>

Literatur

  1. European Glaucoma Society (2014) Terminology and guidelines for glaucoma, 4. Aufl. PubliComm, Milano

    Google Scholar 

  2. Wang D et al (2017) Ethnic differences in lens parameters measured by ocular biometry in a cataract surgery population. PLoS ONE 12(e0179836):6

    Google Scholar 

  3. Wang L et al (2018) Ten-year incidence of primary angle closure in elderly Chinese: the Liwan Eye Study. Br J Ophthalmol 103(3):355–360. https://doi.org/10.1136/bjophthalmol-2017-311808

    Article  PubMed  Google Scholar 

  4. https://gdt.gradepro.org/app/handbook/handbook.html. Zugegriffen: 21.01.2020

  5. Crabb DP et al (2013) How does glaucoma look?: patient perception of visual field loss. Ophthalmology 120(6):1120–1126

    PubMed  Google Scholar 

  6. Weih LM et al (2001) Prevalence and predictors of open-angle glaucoma: results from the visual impairment project. Ophthalmology 108(11):1966–1972

    CAS  PubMed  Google Scholar 

  7. Kawasaki R et al (2013) Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology 120(1):84–90

    PubMed  Google Scholar 

  8. Mukesh BN et al (2002) Five-year incidence of open-angle glaucoma: the visual impairment project. Ophthalmology 109(6):1047–1051

    PubMed  Google Scholar 

  9. Czudowska MA et al (2010) Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam Study. Ophthalmology 117(9):1705–1712

    PubMed  Google Scholar 

  10. de Voogd S et al (2005) Incidence of open-angle glaucoma in a general elderly population: the Rotterdam Study. Ophthalmology 112(9):1487–1493

    PubMed  Google Scholar 

  11. Cedrone C et al (2012) The 12-year incidence of glaucoma and glaucoma-related visual field loss in Italy: the Ponza eye study. J Glaucoma 21(1):1–6

    PubMed  Google Scholar 

  12. Hitzl W et al (2006) The Salzburg-Moorfields Collaborative Glaucoma Study: first results of the prevalence and 5‑year incidences in this prospective, population-based longitudinal study. Klin Monbl Augenheilkd 223(12):970–973

    CAS  PubMed  Google Scholar 

  13. Astrom S, Stenlund H, Linden C (2007) Incidence and prevalence of pseudoexfoliations and open-angle glaucoma in northern Sweden: II. Results after 21 years of follow-up. Acta Ophthalmol Scand 85(8):832–837

    PubMed  Google Scholar 

  14. Pan CW et al (2017) Longitudinal cohort study on the incidence of primary open-angle glaucoma in Bai Chinese. Am J Ophthalmol 176:127–133

    PubMed  Google Scholar 

  15. Kim YK et al (2014) Five-year Incidence of Primary Open-Angle Glaucoma and Rate of Progression in Health Center-Based Korean Population: The Gangnam Eye Study. PLoS One 9(12):e114058.

    PubMed  Google Scholar 

  16. Levkovitch-Verbin H et al (2014) The Maccabi Glaucoma Study: prevalence and incidence of glaucoma in a large israeli health maintenance organization. Am J Ophthalmol 158(2):402–408.e1

    PubMed  Google Scholar 

  17. Vijaya L et al (2014) Predictors for incidence of primary open-angle glaucoma in a South Indian population: the Chennai eye disease incidence study. Ophthalmology 121(7):13706

    Google Scholar 

  18. Varma R et al (2012) Four-year incidence of open-angle glaucoma and ocular hypertension: the Los Angeles Latino Eye Study. Am J Ophthalmol 154(2):315–325.e1

    PubMed  PubMed Central  Google Scholar 

  19. Leske MC et al (2007) Nine-year incidence of open-angle glaucoma in the Barbados Eye Studies. Ophthalmology 114(6):1058–1064

    PubMed  Google Scholar 

  20. Leske MC et al (2001) Incidence of open-angle glaucoma: the Barbados Eye Studies. Arch Ophthalmol 119(1):89–95

    CAS  PubMed  Google Scholar 

  21. Lin CC, Hu CC, Ho JD et al (2013) Obstructive sleep apnea and increased risk of glaucoma: a population-based matched-cohort study. Ophthalmology 120(8):1559–1564

    PubMed  Google Scholar 

  22. Tham YC et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    PubMed  Google Scholar 

  23. Hohn R et al (2018) Prevalence of glaucoma in Germany: results from the Gutenberg Health Study. Graefes Arch Clin Exp Ophthalmol 256(9):1695–1702

    PubMed  Google Scholar 

  24. Ramdas WD et al (2011) Ocular perfusion pressure and the incidence of glaucoma: real effect or artifact? The Rotterdam Study. Invest Ophthalmol Vis Sci 52(9):6875–6881

    PubMed  Google Scholar 

  25. Ekstrom C (2012) Risk factors for incident open-angle glaucoma: a population-based 20-year follow-up study. Acta Ophthalmol 90(4):316–321

    PubMed  Google Scholar 

  26. Le A et al (2003) Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Invest Ophthalmol Vis Sci 44(9):3783–3789

    PubMed  Google Scholar 

  27. Tielsch JM et al (1994) Family history and risk of primary open angle glaucoma. The Baltimore Eye Survey. Arch Ophthalmol 112(1):69–73

    CAS  PubMed  Google Scholar 

  28. Mitchell P et al (2002) Bias in self-reported family history and relationship to glaucoma: the Blue Mountains Eye Study. Ophthalmic Epidemiol 9(5):333–345

    PubMed  Google Scholar 

  29. Kapetanakis VV et al (2016) Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. Br J Ophthalmol 100(1):86–93

    PubMed  Google Scholar 

  30. Kass MA et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713

    Google Scholar 

  31. Cook JA et al (2012) Systematic review of the agreement of tonometers with Goldmann applanation tonometry. Ophthalmology 119(8):1552–1557

    PubMed  Google Scholar 

  32. Reiter C, Gramer E, Gramer G (2012) Pseudoexfoliation syndrome: no central zone of pseudoexfoliation material in patients with pseudophakia—a clinical study. Klin Monbl Augenheilkd 229(3):241–245

    CAS  PubMed  Google Scholar 

  33. Quigley HA et al (2001) The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 119(12):1819–1826

    CAS  PubMed  Google Scholar 

  34. Varma R et al (2004) Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study. Ophthalmology 111(8):1439–1448

    PubMed  Google Scholar 

  35. Alward WL et al (1998) Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 338(15):1022–1027

    CAS  PubMed  Google Scholar 

  36. Fingert JH et al (1999) Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet 8(5):899–905

    CAS  PubMed  Google Scholar 

  37. Rezaie T et al (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295(5557):1077–1079

    CAS  PubMed  Google Scholar 

  38. Monemi S et al (2005) Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 14(6):725–733

    CAS  PubMed  Google Scholar 

  39. Thorleifsson G et al (2007) Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 317(5843):1397–1400

    CAS  PubMed  Google Scholar 

  40. Thorleifsson G et al (2010) Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 42(10):906–909

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Burdon KP et al (2011) Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 43(6):574–578

    CAS  PubMed  Google Scholar 

  42. Gharahkhani P et al (2014) Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat Genet 46(10):1120–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahmadi N et al (2015) Intranasal corticosteroids do not affect intraocular pressure or lens opacity: a systematic review of controlled trials. Rhinology 53(4):290–302

    CAS  PubMed  Google Scholar 

  44. Alfano JE (1963) Changes in the Intraocular pressure associated with systemic steroid therapy. Am J Ophthalmol 56:245–247

    CAS  PubMed  Google Scholar 

  45. Armaly MF (1963) Effect of Corticosteroids on Intraocular pressure and fluid dynamics. I. The effect of Dexamethasone in the normal eye. Arch Ophthalmol 70:482–491

    CAS  PubMed  Google Scholar 

  46. Becker B, Mills DW (1963) Corticosteroids and Intraocular pressure. Arch Ophthalmol 70:500–507

    CAS  PubMed  Google Scholar 

  47. Bernstein HN, Schwartz B (1962) Effects of long-term systemic steroids on ocular pressure and tonographic values. Arch Ophthalmol 68:742–753

    CAS  PubMed  Google Scholar 

  48. Kiddee W et al (2013) Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol 58(4):291–310

    PubMed  Google Scholar 

  49. Mitchell P, Cumming RG, Mackey DA (1999) Inhaled corticosteroids, family history, and risk of glaucoma. Ophthalmology 106(12):2301–2306

    CAS  PubMed  Google Scholar 

  50. Valenzuela CV et al (2019) Intranasal Corticosteroids do not lead to ocular changes: a systematic review and meta-analysis. Laryngoscope 129(1):6–12

    CAS  PubMed  Google Scholar 

  51. Marcus MW et al (2012) Corticosteroids and open-angle glaucoma in the elderly: a population-based cohort study. Drugs Aging 29(12):963–970

    CAS  PubMed  Google Scholar 

  52. Hollands H et al (2013) Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA 309(19):2035–2042

    CAS  PubMed  Google Scholar 

  53. Crowston JG et al (2004) The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: the Blue Mountains Eye Study. Br J Ophthalmol 88(6):766–770

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitchell P et al (1996) Prevalence of open-angle glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology 103(10):1661–1669

    CAS  PubMed  Google Scholar 

  55. Gupta P et al (2016) Prevalence of glaucoma in the United States: the 2005–2008 national health and nutrition examination survey. Invest Ophthalmol Vis Sci 57(6):29052913

    Google Scholar 

  56. Zhao D et al (2015) Diabetes, fasting glucose, and the risk of glaucoma: a meta-analysis. Ophthalmology 122(1):72–78

    PubMed  Google Scholar 

  57. Zhao YX, Chen XW (2017) Diabetes and risk of glaucoma: systematic review and a Meta-analysis of prospective cohort studies. Int J Ophthalmol 10(9):1430–1435

    PubMed  PubMed Central  Google Scholar 

  58. Zhou M et al (2014) Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Plos One 9(8):e102972. https://doi.org/10.1371/journal.pone.0102972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao D et al (2014) The association of blood pressure and primary open-angle glaucoma: a meta-analysis. Am J Ophthalmol 158(3):615–627.e9

    PubMed  Google Scholar 

  60. Ko F et al (2016) Diabetes, triglyceride levels, and other risk factors for glaucoma in the national health and nutrition examination survey 2005–2008. Invest Ophthalmol Vis Sci 57(4):2152–2157

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Deva NC et al (2008) Risk factors for first presentation of glaucoma with significant visual field loss. Clin Experiment Ophthalmol 36(3):217–221

    PubMed  Google Scholar 

  62. Heijl A, Bengtsson B, Oskarsdottir SE (2013) Prevalence and severity of undetected manifest glaucoma: results from the early manifest glaucoma trial screening. Ophthalmology 120(8):1541–1545

    PubMed  Google Scholar 

  63. Gramer G, Gramer E (2018) Stage of visual field loss and age at diagnosis in 1988 patients with different glaucomas: implications for glaucoma screening and driving ability. Int Ophthalmol 38(2):429–441

    PubMed  Google Scholar 

  64. Bengtsson B, Heijl A (2016) Lack of visual field improvement after initiation of Intraocular pressure reducing treatment in the early manifest glaucoma trial. Invest Ophthalmol Vis Sci 57(13):5611–5615

    PubMed  PubMed Central  Google Scholar 

  65. Caprioli J, Coleman AL (2008) Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology 115(7):1123–1129.e3

    PubMed  Google Scholar 

  66. Garway-Heath DF et al (2015) Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385(9975):1295–1304

    CAS  PubMed  Google Scholar 

  67. Li T et al (2016) Comparative effectiveness of first-line medications for primary open-angle glaucoma: a systematic review and network meta-analysis. Ophthalmology 123(1):129–140

    PubMed  Google Scholar 

  68. Leske MC et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121(1):48–56

    Google Scholar 

  69. Leske MC et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114(11):1965–1972

    PubMed  Google Scholar 

  70. Heijl A et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279

    PubMed  Google Scholar 

  71. Chan MPY et al (2017) Glaucoma and intraocular pressure in EPIC-Norfolk Eye Study: cross sectional study. BMJ j3889:358. https://doi.org/10.1136/bmj.j3889

    Article  Google Scholar 

  72. Vessani RM et al (2009) Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J Glaucoma 18(3):253–261

    PubMed  Google Scholar 

  73. Abrams LS et al (1994) Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology 101(10):1662–1667

    CAS  PubMed  Google Scholar 

  74. Jonas JB et al (2000) Ranking of optic disc variables for detection of glaucomatous optic nerve damage. Invest Ophthalmol Vis Sci 41(7):1764–1773

    CAS  PubMed  Google Scholar 

  75. Wang F et al (1998) Evaluation of screening schemes for eye disease in a primary care setting. Ophthalmic Epidemiol 5(2):69–82

    CAS  PubMed  Google Scholar 

  76. Katz J, Sommer A (1990) Screening for glaucomatous visual field loss. The effect of patient reliability. Ophthalmology 97(8):1032–1037

    CAS  PubMed  Google Scholar 

  77. Tuck MW, Crick RP (1997) The cost-effectiveness of various modes of screening for primary open angle glaucoma. Ophthalmic Epidemiol 4(1):3–17

    CAS  PubMed  Google Scholar 

  78. Tielsch JM et al (1991) A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. Am J Epidemiol 134(10):1102–1110

    CAS  PubMed  Google Scholar 

  79. Baptista AM et al (2010) Evaluation of discomfort of Goldmann tonometry without anaesthetic. Ophthalmic Physiol Opt 30(6):854–859

    PubMed  Google Scholar 

  80. Heijl A et al (2009) Natural history of open-angle glaucoma. Ophthalmology 116(12):2271–2276

    PubMed  Google Scholar 

  81. Wilson MR (2002) Progression of visual field loss in untreated glaucoma patients and suspects in St Lucia, West Indies. Trans Am Ophthalmol Soc 100:365–410

    PubMed  PubMed Central  Google Scholar 

  82. Rotchford AP et al (2012) Day-to-day variability in intraocular pressure in glaucoma and ocular hypertension. Br J Ophthalmol 96(7):967–970

    PubMed  Google Scholar 

  83. Coleman DJ, Trokel S (1969) Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol 82(5):637–640

    CAS  PubMed  Google Scholar 

  84. Mauger RR, Likens CP, Applebaum M (1984) Effects of accommodation and repeated applanation tonometry on intraocular pressure. Am J Optom Physiol Opt 61(1):2830

    Google Scholar 

  85. Malihi M, Sit AJ (2012) Effect of head and body position on intraocular pressure. Ophthalmology 119(5):987–991

    PubMed  Google Scholar 

  86. Teng C et al (2003) Effect of a tight necktie on intraocular pressure. Br J Ophthalmol 87(8):946–948

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Leydhecker W (1950) The water-drinking test. Br J Ophthalmol 34(8):457–479

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tran T et al (2014) Rise of intraocular pressure in a caffeine test versus the water drinking test in patients with glaucoma. Clin Experiment Ophthalmol 42(5):427–432

    PubMed  Google Scholar 

  89. Sit AJ (2014) Intraocular pressure variations: causes and clinical significance. Can J Ophthalmol 49(6):484–488

    PubMed  Google Scholar 

  90. Sales CS et al (2014) Open-angle glaucoma in Filipino and white Americans: a comparative study. J Glaucoma 23(4):246–253

    PubMed  Google Scholar 

  91. Ketola E, Kaila M, Honkanen M (2007) Guidelines in context of evidence. Qual Saf Health Care 16(4):308–312

    PubMed  PubMed Central  Google Scholar 

  92. Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (2015) Leitlinienrecherche und -bewertung für ein DMP Chronische Herzinsuffizienz. https://www.iqwig.de/download/V14-01_Vorlaeufiger-Berichtsplan_Leitlinienrecherche-und-bewertung-fuer-ein-DMP-Chronische-Herzinsuffizienz.pdf (Vorläufiger Berichtsplan V14-01). Zugegriffen: 21.01.2020

Download references

Redaktionskomitee

Prof. Dr. med. Alexander Schuster (federführend; DOG, BVA)

Prof. Dr. med. Bernd Bertram (Koordinator; DOG, BVA)

Dr. med. Daniela Claessens (systematische Literaturrecherche, Leitlinienreport; DOG, BVA)

Prof. Dr. med. Norbert Pfeiffer (DOG, BVA)

Prof. Dr. med. Esther Hoffmann (DOG, BVA)

Prof. Dr. med. Thomas Dietlein (DOG, BVA)

Prof. Dr. med. Carl Erb (DOG, BVA)

Prof. Dr. med. Reinhard Burk (DOG, BVA)

Prof. Dr. med. Thomas Klinik (DOG, BVA)

Prof. Dr. med. Thomas Reinhard (DOG, BVA)

Angelika Ostrowski, DBSV

Author information

Authors and Affiliations

Consortia

Ethics declarations

Interessenkonflikt

Die Angaben zu den Interessenkonflikten sind auf der AWMF-Webseite zu finden: https://www.awmf.org/leitlinien/detail/ll/045-015.html.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

The supplement containing this article is not sponsored by industry.

Additional information

Referenzen, die von der Redaktionsgruppe hinzugefügt wurden: [1,2,3,4,5, 21, 23, 30,31,32, 35,36,37,38,39,40,41,42,43,44,45,46,47, 53, 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92]

AWMF-Register Nr. 045-015 Klasse: S2e. Es wurden einzelne redaktionelle Veränderungen an dieser Leitlinie durchgeführt.

Die Originalversion dieses Beitrags wurde korrigiert: In der ursprünglichen Version der Leitlinie wurde in den Empfehlungen 4‑9 und 4‑12 für den Risikofaktor „grenzwertige Papillenexkavation“ versehentlich eine falsche vertikale Cup-to-disc-Ratio angegeben. Diese muss ≥ 0,6 betragen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deutsche Ophthalmologische Gesellschaft (DOG)., Berufsverband der Augenärzte Deutschlands e. V. (BVA). Bewertung von Risikofaktoren für das Auftreten des Offenwinkelglaukoms. Ophthalmologe 118 (Suppl 1), 1–14 (2021). https://doi.org/10.1007/s00347-020-01169-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-020-01169-4

Navigation