Skip to main content
Log in

Perspektiven der laserassistierten Keratoplastik

Eine aktuelle Übersicht und erste experimentelle Erfahrungen mit dem Pikosekundeninfrarotlaser (λ = 3 µm)

Perspectives of laser-assisted keratoplasty

Current overview and first preliminary results with the picosecond infrared laser (λ = 3 µm)

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die vorliegende Arbeit gibt eine Übersicht über den aktuellen Stand der laserassistierten Keratoplastik und beschreibt eine Machbarkeitsstudie zur Anwendung eines neuen Pikosekundenlasers für die applanationsfreie Hornhauttrepanation.

Methoden

Das Verfahren basiert auf einem speziell angepassten Lasersystem (PIRL-HP2-1064 OPA-3000, Attodyne Inc., Kanada), das bei einer Wellenlänge von 3000 ± 90 nm mit einer Pulsdauer von 300 ps und einer Repetitionsrate von 1 kHz arbeitet. Der Pikosekundeninfrarotlaser (PIRL) wird mithilfe eines selbst entwickelten Optiksystems über eine Scannereinheit zur Probe geführt. Die Korneoskleralscheiben wurden vor der Trepanation auf einer künstlichen vorderen Augenkammer fixiert und anschließend unter kontrollierten und stabilen Augeninnendruckverhältnissen mit dem PIRL behandelt.

Ergebnisse

Ein definiertes Ablationsschema, z. B. kreisförmig, linear, rechteckig oder scheibenförmig, kann gewählt und die spezifischen Abmessungen können durch den Benutzer festgelegt werden. Innerhalb dieser Studie wurden kreisförmige und gerade Inzisionen der Hornhaut analysiert. Makroskopische, histologische, konfokal mikroskopische und „Environmental scanning electron microscopy“ (ESEM)-Untersuchungen wurden zur Charakterisierung der Schnittqualität durchgeführt. Mithilfe des PIRL konnten reproduzierbar und stabil Inzisionen in der humanen und porcinen Hornhaut bei minimaler Schädigung des umliegenden Gewebes ausgeführt werden.

Schlussfolgerungen

Die Laserstrahlung des PIRL, die im mittleren infraroten Spektralbereich (λ = 3 µm) exakt auf eine Vibrationsanregungsbande des Wassermoleküls abgestimmt ist, dient als effektives Hilfsmittel zur applanationsfreien Trepanation der Hornhaut und erweitert damit das Instrumentarium der Hornhauttransplantationschirurgie.

Abstract

Background

This article provides a review of the current state of laser-assisted keratoplasty and describes a first proof of concept study to test the feasibility of a new mid-infrared (MIR) picosecond laser to perform applanation-free corneal trephination.

Methods

The procedure is based on a specially adapted laser system (PIRL-HP2-1064 OPA-3000, Attodyne, Canada) which works with a wavelength of 3,000 ± 90 nm, a pulse duration of 300 ps and a repetition rate of 1 kHz. The picosecond infrared laser (PIRL) beam is delivered to the sample by a custom-made optics system with an implemented scanning mechanism. Corneal specimens were mounted on an artificial anterior chamber and subsequent trephination was performed with the PIRL under stable intraocular pressure conditions.

Results

A defined corneal ablation pattern, e.g. circular, linear, rectangular or disc-shaped, can be selected and its specific dimensions are defined by the user. Circular and linear ablation patterns were employed for the incisions in this study. Linear and circular penetrating PIRL incisions were examined by macroscopic inspection, histology, confocal microscopy and environmental scanning electron microscopy (ESEM) for characterization of the incisional quality. Using PIRL reproducible and stable incisions could be made in human and porcine corneal samples with minimal damage to the surrounding tissue.

Conclusion

The PIRL laser radiation in the mid-infrared spectrum with a wavelength of 3 µm is exactly tuned to one of the dominant vibrational excitation bands of the water molecule, serves as an effective tool for applanation-free corneal incision and might broaden the armamentarium of corneal transplant surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Seitz B, Langenbucher A, Naumann GO (2005) The penetrating keratoplasty. A 100-year success story. Ophthalmologe 102:1128–1136, 1138–1139

    Article  CAS  PubMed  Google Scholar 

  2. Naydis I, Klemm M, Hassenstein A et al (2011) Postkeratoplasty astigmatism: comparison of three suturing techniques. Ophthalmologe 108:252–259

    Article  CAS  PubMed  Google Scholar 

  3. Heinzelmann S, Maier P, Reinhard T (2011) Perspectives of posterior lamellar keratoplasty. In search of the perfect lamella. Ophthalmologe 108:825–832

    Article  CAS  PubMed  Google Scholar 

  4. Melles GR, Kamminga N (2003) Techniques for posterior lamellar keratoplasty through a scleral incision. Ophthalmologe 100:689–695

    Article  CAS  PubMed  Google Scholar 

  5. Melles GR, Ong TS, Ververs B, Wees J van der (2008) Preliminary clinical results of Descemet membrane endothelial keratoplasty. Am J Ophthalmol 145:222–227

    Article  PubMed  Google Scholar 

  6. Birnbaum F, Maier P, Reinhard T (2011) Perspectives of femtosecond laser-assisted keratoplasty. Ophthalmologe 108:807–816

    Article  CAS  PubMed  Google Scholar 

  7. Chamberlain WD, Rush SW, Mathers WD et al (2011) Comparison of femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty. Ophthalmology 118:486–491

    Article  PubMed  Google Scholar 

  8. Farid M, Steinert RF, Gaster RN et al (2009) Comparison of penetrating keratoplasty performed with a femtosecond laser zig-zag incision versus conventional blade trephination. Ophthalmology 116:1638–1643

    Article  PubMed  Google Scholar 

  9. Seitz B, Langenbucher A, Naumann GO (2011) Perspectives of excimer laser-assisted keratoplasty. Ophthalmologe 108:817–824

    Article  CAS  PubMed  Google Scholar 

  10. Naumann GO (1995) The bowman lecture. Eye (Lond) 9(Pt 4):395–421

  11. Crotti C, Deloison F, Alahyane F et al (2013) Wavelength optimization in femtosecond laser corneal surgery. Invest Ophthalmol Vis Sci 54:3340–3349

    Article  PubMed  Google Scholar 

  12. Szentmary N, Seitz B, Langenbucher A, Naumann GO (2005) Repeat keratoplasty for correction of high or irregular postkeratoplasty astigmatism in clear corneal grafts. Am J Ophthalmol 139:826–830

    Article  PubMed  Google Scholar 

  13. Naumann GO, Seitz B, Lang GK et al (1993) 193 excimer laser trepanation in perforating keratoplasty. Report of 70 patients. Klin Monatsbl Augenheilkd 203:252–261

    Article  CAS  PubMed  Google Scholar 

  14. Serdarevic ON, Hanna K, Gribomont AC et al (1988) Excimer laser trephination in penetrating keratoplasty. Morphologic features and wound healing. Ophthalmology 95:493–505

    Article  CAS  PubMed  Google Scholar 

  15. Szentmary N, Langenbucher A, Kus MM et al (2007) Elliptical nonmechanical corneal trephination: intraoperative complications and long-term outcome of 42 consecutive excimer laser penetrating keratoplasties. Cornea 26:414–420

    Article  PubMed  Google Scholar 

  16. Preclik A, Langenbucher A, Seitz B, Cursiefen C (2010) Long-term outcome after penetrating keratoplasty for keratoconus – impact of preoperative corneal curvature and best corrected visual acuity on the functional results. Klin Monatsbl Augenheilkd 227:199–207

    Article  CAS  PubMed  Google Scholar 

  17. Seitz B, Langenbucher A, Nguyen NX et al (2004) Results of the first 1,000 consecutive elective nonmechanical keratoplasties using the excimer laser. A prospective study over more than 12 years. Ophthalmologe 101:478–488

    Article  CAS  PubMed  Google Scholar 

  18. Szentmary N, Langenbucher A, Kus MM et al (2007) Long-term refractive results of elliptical excimer laser penetrating keratoplasty (EELPK). Curr Eye Res 32:953–959

    Article  PubMed  Google Scholar 

  19. Seitz B, Langenbucher A, Kus MM et al (1999) Nonmechanical corneal trephination with the excimer laser improves outcome after penetrating keratoplasty. Ophthalmology 106:1156–1164 (discussion 1165)

    Article  CAS  PubMed  Google Scholar 

  20. Lang GK, Naumann GO, Koch JW (1990) A new elliptical excision for corneal transplantation using an excimer laser. Arch Ophthalmol 108:914–915

    Article  CAS  PubMed  Google Scholar 

  21. Kuchle M, Seitz B, Langenbucher A, Naumann GO (1999) Nonmechanical excimer laser penetrating keratoplasty for perforated or predescemetal corneal ulcers. Ophthalmology 106:2203–2209

    Article  CAS  PubMed  Google Scholar 

  22. Mrochen M, Donges A, Korn G (2006) Femtosecond laser for refractive corneal surgery: foundations, mode of action and clinical applications. Ophthalmologe 103:1005–1013

    Article  CAS  PubMed  Google Scholar 

  23. Busin M (2003) A new lamellar wound configuration for penetrating keratoplasty surgery. Arch Ophthalmol 121:260–265

    Article  PubMed  Google Scholar 

  24. Busin M, Arffa RC (2005) Microkeratome-assisted mushroom keratoplasty with minimal endothelial replacement. Am J Ophthalmol 140:138–140

    Article  PubMed  Google Scholar 

  25. Jonas JB, Vossmerbaeumer U (2004) Femtosecond laser penetrating keratoplasty with conical incisions and positional spikes. J Refract Surg 20:397

    PubMed  Google Scholar 

  26. Seitz B, Brunner H, Viestenz A et al (2005) Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser. Am J Ophthalmol 139:941–944

    Article  PubMed  Google Scholar 

  27. Steinert RF, Ignacio TS, Sarayba MA (2007) „Top hat“-shaped penetrating keratoplasty using the femtosecond laser. Am J Ophthalmol 143:689–691

    Article  PubMed  Google Scholar 

  28. Farid M, Kim M, Steinert RF (2007) Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. Ophthalmology 114:2208–2212

    Article  PubMed  Google Scholar 

  29. Farid M, Steinert RF (2010) Femtosecond laser-assisted corneal surgery. Curr Opin Ophthalmol 21:288–292

    PubMed  Google Scholar 

  30. Talamo JH, Gooding P, Angeley D et al (2013) Optical patient interface in femtosecond laser-assisted cataract surgery: contact corneal applanation versus liquid immersion. J Cataract Refract Surg 39:501–510

    Article  PubMed  Google Scholar 

  31. Peyrot DA, Aptel F, Crotti C et al (2010) Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas. J Refract Surg 26:786–795

    Article  PubMed  Google Scholar 

  32. Franjic K, Cowan ML, Kraemer D, Miller RJ (2009) Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations. Opt Express 17:22937–22959

    Article  CAS  PubMed  Google Scholar 

  33. Franjic K, Miller D (2010) Vibrationally excited ultrafast thermodynamic phase transitions at the water/air interface. Phys Chem Chem Phys 12:5225–5239

    Article  CAS  PubMed  Google Scholar 

  34. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Article  CAS  PubMed  Google Scholar 

  35. Bottcher A, Clauditz TS, Knecht R et al (2013) A novel tool in laryngeal surgery: preliminary results of the picosecond infrared laser. Laryngoscope 123:2770–2775

    Article  PubMed  Google Scholar 

  36. Cowan ML, Bruner BD, Huse N et al (2005) Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434:199–202

    Article  CAS  PubMed  Google Scholar 

  37. Amini-Nik S, Kraemer D, Cowan ML et al (2010) Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery. PLoS One 5:1–6

    Article  Google Scholar 

  38. Paltauf G, Dyer PE (2003) Photomechanical processes and effects in ablation. Chem Rev 103:487–518

    Article  CAS  PubMed  Google Scholar 

  39. Aptel F, Olivier N, Deniset-Besseau A et al (2010) Multimodal nonlinear imaging of the human cornea. Invest Ophthalmol Vis Sci 51:2459–2465

    Article  PubMed  Google Scholar 

  40. Plamann K, Aptel F, Arnold CL et al (2010) Ultrashort pulse laser surgery of the cornea and the sclera. J Opt 12:084002

    Article  Google Scholar 

  41. Vengris M, Gabryte E, Aleknavicius A et al (2010) Corneal shaping and ablation of transparent media by femtosecond pulses in deep ultraviolet range. J Cataract Refract Surg 36:1579–1587

    Article  PubMed  Google Scholar 

  42. Roszkowska AM, De Grazia L, Ferreri P, Ferreri G (2006) One-year clinical results of photorefractive keratectomy with a solid-state laser for refractive surgery. J Refract Surg 22:611–613

    PubMed  Google Scholar 

  43. Zirm E (1906) Eine erfolgreiche totale Keratoplastik. Graefes Arch Clin Exp Ophthalmol 64:580–593

    Article  Google Scholar 

  44. Danieliene E, Gabryte E, Danielius R et al (2013) Corneal stromal ablation with femtosecond ultraviolet pulses in rabbits. J Cataract Refract Surg 39:258–267

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S.J. Linke, L. Ren, A. Frings, J. Steinberg, W. Wöllmer, T. Katz, R. Reimer, N.O. Hansen, N. Jowett, G. Richard und R.J. Dwayne Miller geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.J. Linke.

Additional information

__ ____

Diese Studie wurde durch einen European Research Council Advanced Investigator Grant „Miller: ERC-adG-2011-291630: SUREPIRL, Picosecond Infrared Laser for Scarfree Surgery with Preservation of Tissue Structure and Recognition of Tissue Type and Boundaries“ gefördert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linke, S., Ren, L., Frings, A. et al. Perspektiven der laserassistierten Keratoplastik. Ophthalmologe 111, 523–530 (2014). https://doi.org/10.1007/s00347-013-2995-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2995-7

Schlüsselwörter

Keywords

Navigation