Skip to main content
Log in

Pathogenese der Frühgeborenenretinopathie

Pathogenesis of retinopathy of prematurity

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die Frühgeborenenretinopathie („retinopathy of prematurity“, ROP) stellt ein komplexes Krankheitsbild dar, dessen multifaktorielle Pathogenese trotz wichtiger Forschungsfortschritte bisher nur unvollständig verstanden ist. Wichtige pathogenetische Faktoren sind einerseits das Gestationsalter bei Geburt sowie das Geburtsgewicht, andererseits postnatale Faktoren wie Sauerstoffexposition, Gewichtszunahme und Expression angiogener Wachstumsfaktoren. Einige dieser wesentlichen Aspekte der ROP-Pathogenese sollen im vorliegenden Beitrag diskutiert und in den klinischen Kontext gestellt werden. Insbesondere der Einzug der Anti-VEGF-Therapie als Behandlungsoption für die ROP lässt es sinnvoll erscheinen, die Rolle von VEGF in der Pathogenese der ROP zu beleuchten. Darüber hinaus werden weitere Faktoren diskutiert, die teilweise der erhöhten VEGF-Expression pathomechanistisch vorgeschaltet sind und daher mögliche protektive Behandlungsansätze darstellen. Zu diesen gehört vor allem der systemische Wachstumsfaktor IGF-1. Schließlich werden Faktoren wie die postnatale Gewichtszunahme diskutiert, die sich in Studien als Screeningparameter bewährt haben und früh prognostische Aussagen über die zu erwartende Schwere der ROP erlauben.

Abstract

Retinopathy of prematurity (ROP) is a complex disease with a multifactorial pathogenetic cascade that is still only partially understood. Important pathogenetic factors are gestational age at birth and birth weight. Potent postnatal factors are exposure to supplemental oxygen, slow weight gain and expression of angiogenic growth factors. Some of these crucial aspects of ROP pathogenesis will be discussed in this article and put into clinical context. With the introduction of intravitreal anti-VEGF (vascular endothelial growth factor) treatment into ROP therapy, the pathomechanistic role of VEGF in ROP deserves a special focus. Apart from VEGF, other factors will be discussed that may precede VEGF upregulation and thus may represent targets for an earlier and potentially protective intervention. Among these insulin-like growth factor 1 (IGF-1) appears to be most prominent. Finally, factors such as postnatal weight gain will be discussed in light of their potential role as screening parameters and their ability to predict ROP severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Aiello LP, Pierce EA, Foley ED et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 92:10457–10461

    Article  PubMed  CAS  Google Scholar 

  2. Chen J, Stahl A, Hellstrom A, Smith LEH (2011) Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatrics 23(2):173–178

    Article  CAS  Google Scholar 

  3. Chung EJ, Kim JH, Ahn HS, Koh HJ (2007) Combination of laser photocoagulation and intravitreal bevacizumab (Avastin) for aggressive zone I retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 245:1727–1730

    Article  PubMed  CAS  Google Scholar 

  4. Compernolle V, Brusselmans K, Acker T et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8:702–710

    PubMed  CAS  Google Scholar 

  5. Connor KM, Krah NM, Dennison RJ et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4:1565–1573

    Article  PubMed  CAS  Google Scholar 

  6. Connor KM, SanGiovanni JP, Lofqvist C et al (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13:868–873

    Article  PubMed  CAS  Google Scholar 

  7. Eckert GU, Fortes Filho JB, Maia M, Procianoy RS (2012) A predictive score for retinopathy of prematurity in very low birth weight preterm infants. Eye (Lond) 26:400–406

    Google Scholar 

  8. Fluckiger S, Bucher HU, Hellstrom A et al (2011) The early postnatal weight gain as a predictor of retinopathy of prematurity. Klin Monatsbl Augenheilkd 228:306–310

    Article  PubMed  CAS  Google Scholar 

  9. Fortes Filho JB, Bonomo PP, Maia M, Procianoy RS (2009) Weight gain measured at 6 weeks after birth as a predictor for severe retinopathy of prematurity: study with 317 very low birth weight preterm babies. Graefes Arch Clin Exp Ophthalmol 247:831–836

    Article  Google Scholar 

  10. Fortes Filho JB, Eckert GU, Valiatti FB et al (2010) The influence of gestational age on the dynamic behavior of other risk factors associated with retinopathy of prematurity (ROP). Graefes Arch Clin Exp Ophthalmol 248:893–900

    Article  Google Scholar 

  11. Hard AL, Lofqvist C, Fortes Filho JB et al (2010) Predicting proliferative retinopathy in a Brazilian population of preterm infants with the screening algorithm WINROP. Arch Ophthalmol 128:1432–1436

    Article  PubMed  Google Scholar 

  12. Hashimoto T, Zhang XM, Chen BY, Yang XJ (2006) VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 133:2201–2210

    Article  PubMed  CAS  Google Scholar 

  13. Hellstrom A, Engstrom E, Hard AL et al (2003) Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 112:1016–1020

    Article  PubMed  Google Scholar 

  14. Hellstrom A, Ley D, Hansen-Pupp I et al (2010) New insights into the development of retinopathy of prematurity – importance of early weight gain. Acta Paediatr 99:502–508

    Article  PubMed  CAS  Google Scholar 

  15. Hoerster R, Muether P, Dahlke C et al (2012) Serum concentrations of vascular endothelial growth factor in an infant treated with ranibizumab for retinopathy of prematurity. Acta Ophthalmol [Epub ahead of print]

  16. Honda S, Hirabayashi H, Tsukahara Y, Negi A (2008) Acute contraction of the proliferative membrane after an intravitreal injection of bevacizumab for advanced retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 246:1061–1063

    Article  PubMed  CAS  Google Scholar 

  17. Lange C, Ehlken C, Stahl A et al (2009) Kinetics of retinal vaso-obliteration and neovascularisation in the oxygen-induced retinopathy (OIR) mouse model. Graefes Arch Clin Exp Ophthalmol 247:1205–1211

    Article  PubMed  CAS  Google Scholar 

  18. Lofqvist C, Andersson E, Sigurdsson J et al (2006) Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol 124:1711–1718

    Article  PubMed  Google Scholar 

  19. Lofqvist C, Hansen-Pupp I, Andersson E et al (2009) Validation of a new retinopathy of prematurity screening method monitoring longitudinal postnatal weight and insulinlike growth factor I. Arch Ophthalmol 127:622–627

    Article  PubMed  Google Scholar 

  20. Mintz-Hittner HA, Kennedy KA, Chuang AZ (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364:603–615

    Article  PubMed  CAS  Google Scholar 

  21. Mota A, Carneiro A, Breda J et al (2012) Combination of intravitreal ranibizumab and laser photocoagulation for aggressive posterior retinopathy of prematurity. Case Report Ophthalmol 3:136–141

    Article  PubMed  Google Scholar 

  22. Orozco-Gomez LP, Hernandez-Salazar L, Moguel-Ancheita S et al (2011) Laser-ranibizumab treatment for retinopathy of prematurity in umbral-preumbral disease. Three years of experience. Cir Cir 79:207–214, 225–232

    PubMed  Google Scholar 

  23. Pawlik D, Lauterbach R, Turyk E (2011) Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants. Pediatrics 127:223–228

    Article  PubMed  Google Scholar 

  24. Pelken L, Maier RF (2008) Risk factors and prevention of retinopathy of prematurity. Ophthalmologe 105:1108–1113

    Article  PubMed  CAS  Google Scholar 

  25. Perez-Munuzuri A, Fernandez-Lorenzo JR, Couce-Pico ML et al (2010) Serum levels of IGF1 are a useful predictor of retinopathy of prematurity. Acta Paediatr 99:519–525

    Article  PubMed  CAS  Google Scholar 

  26. Pierce EA, Avery RL, Foley ED et al (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A 92:905–909

    Article  PubMed  CAS  Google Scholar 

  27. Redaktionskomitee von DOG BVA und RG (2012) Stellungnahme der Deutschen Ophthalmologischen Gesellschaft, der Retinologischen Gesellschaft und des Berufsverbandes der Augenärzte Deutschlands zum Einsatz von Bevacizumab in der Therapie der Frühgeborenenretinopathie. Ophthalmologe 109:197–204

    Google Scholar 

  28. Sapieha P, Stahl A, Chen J et al (2011) 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of omega-3 polyunsaturated fatty acids. Sci Transl Med 3:69ra12

    Article  PubMed  Google Scholar 

  29. Seiberth V, Linderkamp O (2000) Risk factors in retinopathy of prematurity. A multivariate statistical analysis. Ophthalmologica 214:131–135

    Article  PubMed  CAS  Google Scholar 

  30. Silverman WA (1982) Retinopathy of prematurity: oxygen dogma challenged. Arch Dis Child 57:731–733

    Article  PubMed  CAS  Google Scholar 

  31. Silverman WA (1986) Epoche in retinopathy of prematurity. Arch Dis Child 61:522–525

    Article  PubMed  CAS  Google Scholar 

  32. Singer D, Muhlfeld C (2007) Perinatal adaptation in mammals: the impact of metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 148:780–784

    Article  PubMed  Google Scholar 

  33. Smith LE (2003) Pathogenesis of retinopathy of prematurity. Semin Neonatol 8:469–473

    Article  PubMed  Google Scholar 

  34. Smith LE, Shen W, Perruzzi C et al (1999) Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med 5:1390–1395

    Article  PubMed  CAS  Google Scholar 

  35. Smith LE, Wesolowski E, McLellan A et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  36. Stahl A, Chen J, Sapieha P et al (2010) Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am J Pathol 177:2715–2723

    Article  PubMed  Google Scholar 

  37. Stahl A, Connor KM, Sapieha P et al (2010) The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 51:2813–2826

    Article  PubMed  Google Scholar 

  38. Stahl A, Krohne TU, Sapieha P, Chen J et al (2011) Lipid metabolites in pathogenesis and treatment of neovascular eye disease. Br J Ophthalmol 95(11):1496–1501

    Article  PubMed  Google Scholar 

  39. Stahl A, Sapieha P, Connor KM et al (2010) Short communication: PPAR gamma mediates a direct antiangiogenic effect of omega 3-PUFAs in proliferative retinopathy. Circ Res 107:495–500

    Article  PubMed  CAS  Google Scholar 

  40. Wallace DK, Kylstra JA, Phillips SJ, Hall JG (2000) Poor postnatal weight gain: a risk factor for severe retinopathy of prematurity. J AAPOS 4:343–347

    Article  PubMed  CAS  Google Scholar 

  41. Woo SJ, Park KH, Ahn J et al (2011) A co-twin study of the relative effect of birth weight and gestational age on retinopathy of prematurity. Eye (Lond) 25:1478–1483

    Google Scholar 

  42. Wu C, Vanderveen DK, Hellstrom A et al (2010) Longitudinal postnatal weight measurements for the prediction of retinopathy of prematurity. Arch Ophthalmol 128:443–447

    Article  PubMed  Google Scholar 

  43. Yankauer A (1955) Information memorandum from New York State of Health. Zitiert in Silverman WA (1982) Retinopathy of prematurity: oxygen dogma challenged. Arch Dis Child 57:731–733

    Google Scholar 

  44. Sapieha et al. (2012) Nutrition and Diabetes. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408641/

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: Stahl: Beratertätigkeit für Novartis, Forschungsförderung: Novartis. Lagreze: Beratertätigkeit für Merz, Allergan. Agostini: Beratertätigkeit für Genentech, Novartis, Bayer Healthcare, Forschungsförderung: Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahl, A., Lagrèze, W. & Agostini, H. Pathogenese der Frühgeborenenretinopathie. Ophthalmologe 109, 1174–1181 (2012). https://doi.org/10.1007/s00347-012-2616-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-012-2616-x

Schlüsselwörter

Keywords

Navigation