Skip to main content
Log in

Pathogenetische Konzepte zur Pigmentepithelabhebung bei exsudativer AMD

Pathogenetic concepts for pigment epithelial detachment in exudative AMD

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die Abhebung des retinalen Pigmentepithels (PED) als eine spezifische Manifestation bei der exsudativen altersabhängigen Makuladegeneration (AMD) kann zu einer erheblichen Minderung des zentralen Sehvermögens führen. Für eine erfolgreiche therapeutische Intervention ist das Verständnis der Faktoren, die für die Entstehung der PED wichtig sind, notwendig. Zentrale pathogenetische Ideen dazu liefert die Theorie der Abnahme der hydraulischen Konduktivität der Bruch-Membran. Diese wird multifaktoriell durch eine zunehmende Lipideinlagerung, eine verstärkte Kollagenvernetzung und eine Änderung in der Zusammensetzung von gewebsauflösenden Enzymen und deren Inhibitoren hervorgerufen. Die Assoziation von Gefäßneubildungen und einer unveränderten RPE-Pumpaktivität kann auf dieser Grundlage zum klinischen Bild der serösen PED im Rahmen der exsudativen AMD führen.

Abstract

Retinal pigment epithelial detachment (PED) as a specific manifestation in exudative age-related macular degeneration (AMD) may lead to a substantial decrease of central vision. An understanding of important events during the development of PED is necessary for a successful therapeutic intervention. At present the leading pathogenetic theory is that of reduced hydraulic conductivity of Bruch’s membrane. The mechanisms underlying this process are caused by increased deposition of lipids, enhanced collagen cross-linking and alteration in the ratio of tissue-dissolving enzymes and their inhibitors. The association of newly formed vessels and an unaltered RPE pump activity can lead to the clinical picture of serous PED during exudative AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Ahir A, Guo L, Hussain AA, Marshall J (2002) Expression of metalloproteinases from human retinal pigment epithelial cells and their effects on the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 43:458–465

    PubMed  Google Scholar 

  2. Aisenbrey S, Zhang M, Bacher D et al (2006) Retinal pigment epithelial cells synthesize laminins, including laminin 5, and adhere to them through alpha3- and alpha6-containing integrins. Invest Ophthalmol Vis Sci 47:5537–5544

    Article  PubMed  Google Scholar 

  3. American Medical Association (1994) Analysis of Lipid Deposits Extracted From Human Macular and Peripheral Bruch’s Membrane. Arch Ophthalmol 112(3):404

    Google Scholar 

  4. Arroyo JG, Yang L, Bula D, Chen DF (2005) Photoreceptor apoptosis in human retinal detachment. Am J Ophthalmol 139:605–610

    Article  PubMed  Google Scholar 

  5. Bairati A Jr, Orzalesi N (1963) The Ultrastructure of the Pigment Epithelium and of the Photoreceptor-Pigment Epithelium Junction in the Human Retina. J Ultrastruct Res 41:484–496

    Article  PubMed  Google Scholar 

  6. Barondes MJ, Pagliarini S, Chisholm IH et al (1992) Controlled trial of laser photocoagulation of pigment epithelial detachments in the elderly: 4 year review. Br J Ophthalmol 76:5–7

    Article  CAS  PubMed  Google Scholar 

  7. Bird AC (1991) Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye (London, England) 5(Pt 1):1–12

  8. Bird AC, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc U K 105(Pt 6):674–682

    PubMed  Google Scholar 

  9. Bok D (1985) Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci 26:1659–1694

    CAS  PubMed  Google Scholar 

  10. Chang CJ, Lai WW, Edward DP, Tso MO (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Arch Ophthalmol 113:880–886

    CAS  PubMed  Google Scholar 

  11. Chuang EL, Bird AC (1988) The pathogenesis of tears of the retinal pigment epithelium. Am J Ophthalmol 105:285–290

    CAS  PubMed  Google Scholar 

  12. Curcio CA, Johnson M, Huang JD, Rudolf M (2009) Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28:393–422

    Article  CAS  PubMed  Google Scholar 

  13. Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339

    CAS  PubMed  Google Scholar 

  14. Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274

    CAS  PubMed  Google Scholar 

  15. Curcio CA, Presley JB, Malek G et al (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81:731–741

    Article  CAS  PubMed  Google Scholar 

  16. Davis WL, Jones RG, Hagler HK (1981) An electron microscopic histochemical and analytical X-ray microprobe study of calcification in Bruch’s membrane from human eyes. J Histochem Cytochem 29:601–608

    CAS  PubMed  Google Scholar 

  17. Fisher RF (1987) The influence of age on some ocular basement membranes. Eye (London, England) 1(Pt 2):184–189

  18. Gass JD (1967) Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol 63(Suppl):1–139

    PubMed  Google Scholar 

  19. Gass JD (1984) Pathogenesis of tears of the retinal pigment epithelium. Br J Ophthalmol 68:513–519

    Article  CAS  PubMed  Google Scholar 

  20. Gass JD, Norton EW (2003) Serous detachment of the retinal pigment epithelium. 1966. Retina (Philadelphia, Pa) 23:990–1015

  21. Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology 100:1519–1535

    CAS  PubMed  Google Scholar 

  22. Green WR, Key SN 3rd (1977) Senile macular degeneration: a histopathologic study. Trans Am Ophthalmol Soc 75:180–254

    CAS  PubMed  Google Scholar 

  23. Guo L, Hussain AA, Limb GA, Marshall J (1999) Age-dependent variation in metalloproteinase activity of isolated human Bruch’s membrane and choroid. Invest Ophthalmol Vis Sci 40:2676–2682

    CAS  PubMed  Google Scholar 

  24. Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res 18:59–90

    Article  CAS  PubMed  Google Scholar 

  25. Haimovici R, Gantz DL, Rumelt S et al (2001) The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Invest Ophthalmol Vis Sci 42:1592–1599

    CAS  PubMed  Google Scholar 

  26. Hamlin CR, Kohn RR (1971) Evidence for progressive, age-related structural changes in post-mature human collagen. Biochim Biophys Acta 236:458–467

    CAS  PubMed  Google Scholar 

  27. Ho TC, Del Priore LV (1997) Reattachment of cultured human retinal pigment epithelium to extracellular matrix and human Bruch’s membrane. Invest Ophthalmol Vis Sci 38:1110–1118

    CAS  PubMed  Google Scholar 

  28. Holz FG, Pauleikhoff D, Klein R, Bird AC (2004) Pathogenesis of lesions in late age-related macular disease. Am J Ophthalmol 137:504–510

    Article  PubMed  Google Scholar 

  29. Holz FG, Sheraidah G, Pauleikhoff D, Bird AC (1994) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol 112:402–406

    CAS  PubMed  Google Scholar 

  30. Huang JD, Presley JB, Chimento MF et al (2007) Age-related changes in human macular Bruch’s membrane as seen by quick-freeze/deep-etch. Exp Eye Res 85:202–218

    Article  CAS  PubMed  Google Scholar 

  31. Hussain AA, Rowe L, Marshall J (2002) Age-related alterations in the diffusional transport of amino acids across the human Bruch’s-choroid complex. J Opt Soc Am 19:166–172

    Article  CAS  Google Scholar 

  32. Johnson M, Dabholkar A, Huang JD et al (2007) Comparison of morphology of human macular and peripheral Bruch’s membrane in older eyes. Curr Eye Res 32:791–799

    Article  PubMed  Google Scholar 

  33. Kamei M, Hollyfield JG (1999) TIMP-3 in Bruch’s membrane: changes during aging and in age-related macular degeneration. Invest Ophthalmol Vis Sci 40:2367–2375

    CAS  PubMed  Google Scholar 

  34. Karwatowski WS, Jeffries TE, Duance VC et al (1995) Preparation of Bruch’s membrane and analysis of the age-related changes in the structural collagens. Br J Ophthalmol 79:944–952

    Article  CAS  PubMed  Google Scholar 

  35. Kunze A, Abari E, Semkova I et al (2010) Deposition of nidogens and other basement membrane proteins in the young and aging mouse retina. Ophthalmic Res 43:108–112

    Article  CAS  PubMed  Google Scholar 

  36. Lommatzsch A, Heimes B, Gutfleisch M et al (2009) Serous pigment epithelial detachment in age-related macular degeneration: comparison of different treatments. Eye (London, England) 23:2163–2168

    Google Scholar 

  37. Lommatzsch A, Hermans P, Muller KD et al (2008) Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle. Ophthalmologie 246:803–810

    CAS  Google Scholar 

  38. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36:1290–1297

    CAS  PubMed  Google Scholar 

  39. Nakaizumi Y, Hogan MJ, Feeney L (1964) The Ultrastructure of Bruch’s Membrane. 3. The Macular Area of the Human Eye. Arch Ophthalmol 72:395–400

    CAS  PubMed  Google Scholar 

  40. Okubo A, Rosa RH Jr, Bunce CV et al (1999) The relationships of age changes in retinal pigment epithelium and Bruch’s membrane. Invest Ophthalmol Vis Sci 40:443–449

    CAS  PubMed  Google Scholar 

  41. Pauleikhoff D, Harper CA, Marshall J, Bird AC (1990) Aging changes in Bruch’s membrane. A histochemical and morphologic study. Ophthalmology 97:171–178

    CAS  PubMed  Google Scholar 

  42. Pauleikhoff D, Wojteki S, Muller D et al (2000) Adhesive properties of basal membranes of Bruch’s membrane. Immunohistochemical studies of age-dependent changes in adhesive molecules and lipid deposits. Ophthalmologe 97:243–250

    Article  CAS  PubMed  Google Scholar 

  43. Pauleikhoff D, Zuels S, Sheraidah GS et al (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99:1548–1553

    CAS  PubMed  Google Scholar 

  44. Ramrattan RS, Schaft TL van der, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    CAS  PubMed  Google Scholar 

  45. Rizzolo LJ (1991) Basement membrane stimulates the polarized distribution of integrins but not the Na,K-ATPase in the retinal pigment epithelium. Cell Regul 2:939–949

    CAS  PubMed  Google Scholar 

  46. Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60:324–341

    Article  CAS  PubMed  Google Scholar 

  47. Sheraidah G, Steinmetz R, Maguire J et al (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100:47–51

    CAS  PubMed  Google Scholar 

  48. Starita C, Hussain AA, Marshall J (1995) Decreasing hydraulic conductivity of Bruch’s membrane: relevance to photoreceptor survival and lipofuscinoses. Am J Med Genet 57:235–237

    Article  CAS  PubMed  Google Scholar 

  49. Starita C, Hussain AA, Patmore A, Marshall J (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Invest Ophthalmol Vis Sci 38:762–767

    CAS  PubMed  Google Scholar 

  50. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  51. Tsuboi S (1987) Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium. Invest Ophthalmol Vis Sci 28:1776–1782

    CAS  PubMed  Google Scholar 

  52. Schaft TL van der, Mooy CM, Bruijn WC de, Jong PT de (1993) Early stages of age-related macular degeneration: an immunofluorescence and electron microscopy study. Br J Ophthalmol 77:657–661

    Article  PubMed  Google Scholar 

  53. Vater CA, Harris ED Jr, Siegel RC (1979) Native cross-links in collagen fibrils induce resistance to human synovial collagenase. Biochem J 181:639–645

    CAS  PubMed  Google Scholar 

  54. Wang L, Li CM, Rudolf M et al (2009) Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. Invest Ophthalmol Vis Sci 50:870–877

    Article  PubMed  Google Scholar 

  55. Wasmuth S, Lueck K, Baehler H et al (2009) Increased vitronectin production by complement-stimulated human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50:5304–5309

    Article  PubMed  Google Scholar 

  56. Wimmers S, Karl MO, Strauss O (2007) Ion channels in the RPE. Prog Retin Eye Res 26:263–301

    Article  CAS  PubMed  Google Scholar 

  57. Zacks DN, Zheng QD, Han Y et al (2004) FAS-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 45:4563–4569

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wasmuth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasmuth, S. Pathogenetische Konzepte zur Pigmentepithelabhebung bei exsudativer AMD. Ophthalmologe 107, 1109–1114 (2010). https://doi.org/10.1007/s00347-010-2142-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-010-2142-7

Schlüsselwörter

Keywords

Navigation