Skip to main content
Log in

Genetically predicted cardiovascular diseases could increase the risk of erectile dysfunction: a bidirectional Mendelian randomization

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Erectile dysfunction (ED) often appears concomitantly with cardiovascular diseases (CVDs). However, the causal relationship between ED and CVDs is still unclear. This study aimed to investigate the causal effects between CVDs and ED using bidirectional Mendelian randomization (MR).

Methods

ED data (6175 cases and 217,630 controls) were obtained from the IEU OpenGWAS project. Seven types of CVDs were acquired in our study, including stroke (Sample size = 440,328), myocardial infection (Sample size = 184,305), coronary heart disease (Sample size = 86,995), hypertension (Sample size = 36,683), heart failure (Sample size = 208,178), atrial fibrillation (Sample size = 1,030,836), and coronary artery disease (Sample size = 141,217). Inverse variance weighted (IVW) was selected as the primary method for MR analysis.

Results

IVW results indicated that stroke (OR = 1.14, 95% CI = 1.02–1.29, P = 0.025), coronary artery disease (OR = 1.09, 95% CI = 1.02–1.16, P = 0.013), coronary heart disease (OR = 1.07, 95% CI = 1.01–1.13, P = 0.017), myocardial infection (OR = 1.09, 95% CI = 1.02–1.17, P = 0.011), and atrial fibrillation (OR = 1.06, 95% CI = 1.00–1.12, P = 0.04) were causally associated with ED. The reverse MR analysis suggested that ED did not influence the prevalence of CVDs.

Conclusion

These findings highlighted CVDs as causal risk factors for ED, but ED did not directly result in the development of CVDs. Regular monitoring of the erectile function of individuals with CVDs, along with implementing appropriate preventive measures, might help reduce the incidence of ED and enhance the sexual well-being of patients with CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data could be obtained from the publicly available IEU OpenGWAS Project (https://gwas.mrcieu.ac.uk/).

References

  1. Wang TD, Lee CK, Chia YC, Tsoi K, Buranakitjaroen P et al (2021) Hypertension and erectile dysfunction: the role of endovascular therapy in Asia. J Clin Hypertens (Greenwich) 23:481–488

    Article  CAS  PubMed  Google Scholar 

  2. Yafi FA, Jenkins L, Albersen M, Corona G, Isidori AM et al (2016) Erectile dysfunction. Nat Rev Dis Primers 2:16003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rew KT, Heidelbaugh JJ (2016) Erectile dysfunction. Am Fam Physician 94:820–827

    PubMed  Google Scholar 

  4. Chen L, Shi GR, Huang DD, Li Y, Ma CC et al (2019) Male sexual dysfunction: a review of literature on its pathological mechanisms, potential risk factors, and herbal drug intervention. Biomed Pharmacother 112:108585

    Article  CAS  PubMed  Google Scholar 

  5. Elyamani R, Soulaymani A, Hami H (2021) Epidemiology of cardiovascular diseases in Morocco: a systematic review. Rev Diabet Stud 17:57–67

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shamloul R, Ghanem H (2013) Erectile dysfunction. Lancet 381:153–165

    Article  CAS  PubMed  Google Scholar 

  7. Durukan E, Jensen CFS, Skaarup KG, Ostergren PB, Sonksen J et al (2023) Erectile dysfunction is associated with left ventricular diastolic dysfunction: a systematic review and meta-analysis. Eur Urol Focus. https://doi.org/10.1016/j.euf.2023.06.001

    Article  PubMed  Google Scholar 

  8. Inman BA, Sauver JL, Jacobson DJ, McGree ME, Nehra A et al (2009) A population-based, longitudinal study of erectile dysfunction and future coronary artery disease. Mayo Clin Proc 84:108–113

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rinkuniene E, Gimzauskaite S, Badariene J, Dzenkeviciute V, Kovaite M et al (2021) The prevalence of erectile dysfunction and its association with cardiovascular risk factors in patients after myocardial infarction. Medicina (Kaunas) 57:1103

    Article  PubMed  Google Scholar 

  10. Eaton CB, Liu YL, Mittleman MA, Miner M, Glasser DB et al (2007) A retrospective study of the relationship between biomarkers of atherosclerosis and erectile dysfunction in 988 men. Int J Impot Res 19:218–225

    Article  CAS  PubMed  Google Scholar 

  11. Platek AE, Hrynkiewicz-Szymanska A, Kotkowski M, Szymanski FM, Syska-Suminska J et al (2016) Prevalence of erectile dysfunction in atrial fibrillation patients: a cross-sectional, Epidemiological Study. Pacing Clin Electrophysiol 39:28–35

    Article  PubMed  Google Scholar 

  12. Dai H, Wang J, Zhao Q, Ma J, Gong X et al (2020) Erectile dysfunction and associated risk factors in male patients with ischemic stroke: a cross-sectional study. Medicine (Baltimore) 99:e18583

    Article  PubMed  Google Scholar 

  13. Wang XY, Huang W, Zhang Y (2018) Relation between hypertension and erectile dysfunction: a meta-analysis of cross-section studies. Int J Impot Res 30:141–146

    Article  PubMed  Google Scholar 

  14. Imprialos K, Koutsampasopoulos K, Manolis A, Doumas M (2021) Erectile dysfunction as a cardiovascular risk factor: time to step up? Curr Vasc Pharmacol 19:301–312

    Article  CAS  PubMed  Google Scholar 

  15. Carter AR, Sanderson E, Hammerton G, Richmond RC, Davey Smith G et al (2021) Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol 36:465–478

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bovijn J, Jackson L, Censin J, Chen CY, Laisk T et al (2019) GWAS identifies risk locus for erectile dysfunction and implicates hypothalamic neurobiology and diabetes in etiology. Am J Hum Genet 104:157–163

    Article  CAS  PubMed  Google Scholar 

  17. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y et al (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50:524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW et al (2018) Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet 50:1234–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C et al (2015) A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burgess S, Thompson SG, Collaboration CCG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40:755–764

    Article  PubMed  Google Scholar 

  22. Holmes MV, Ala-Korpela M, Smith GD (2017) Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife. https://doi.org/10.7554/eLife.34408

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J et al (2018) Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int J Epidemiol 47:1264–1278

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo W, Liao C, Zou Y, Li F, Li T et al (2010) Erectile dysfunction and risk of clinical cardiovascular events: a meta-analysis of seven cohort studies. J Sex Med 7:2805–2816

    Article  PubMed  Google Scholar 

  28. Chiurlia E, D’Amico R, Ratti C, Granata AR, Romagnoli R et al (2005) Subclinical coronary artery atherosclerosis in patients with erectile dysfunction. J Am Coll Cardiol 46:1503–1506

    Article  PubMed  Google Scholar 

  29. Kalka D, Gebala J, Biernikiewicz M, Mrozek-Szetela A, Rozek-Piechura K et al (2021) Erectile dysfunction in men burdened with the familial occurrence of coronary artery disease. J Clin Med 10:4046

    Article  PubMed  PubMed Central  Google Scholar 

  30. Montorsi F, Briganti A, Salonia A, Rigatti P, Margonato A et al (2003) Erectile dysfunction prevalence, time of onset and association with risk factors in 300 consecutive patients with acute chest pain and angiographically documented coronary artery disease. Eur Urol 44:360–364 (discussion 4-5)

    Article  PubMed  Google Scholar 

  31. Shi H, Zhang FR, Zhu CX, Wang S, Li S et al (2007) Incidence of changes and predictive factors for sexual function after coronary stenting. Andrologia 39:16–21

    Article  CAS  PubMed  Google Scholar 

  32. Wabrek AJ, Burchell RC (1980) Male sexual dysfunction associated with coronary heart disease. Arch Sex Behav 9:69–75

    Article  CAS  PubMed  Google Scholar 

  33. Compostella L, Compostella C, Truong LV, Russo N, Setzu T et al (2017) History of erectile dysfunction as a predictor of poor physical performance after an acute myocardial infarction. Eur J Prev Cardiol 24:460–467

    Article  PubMed  Google Scholar 

  34. Zhao S, Wu W, Wu P, Ding C, Xiao B et al (2021) Significant increase of erectile dysfunction in men with post-stroke: a comprehensive review. Front Neurol 12:671738

    Article  PubMed  PubMed Central  Google Scholar 

  35. Winder K, Seifert F, Kohrmann M, Crodel C, Kloska S et al (2017) Lesion mapping of stroke-related erectile dysfunction. Brain 140:1706–1717

    Article  PubMed  Google Scholar 

  36. Koehn J, Crodel C, Deutsch M, Kolominsky-Rabas PL, Hosl KM et al (2015) Erectile dysfunction (ED) after ischemic stroke: association between prevalence and site of lesion. Clin Auton Res 25:357–365

    Article  PubMed  Google Scholar 

  37. Terentes-Printzios D, Ioakeimidis N, Rokkas K, Vlachopoulos C (2022) Interactions between erectile dysfunction, cardiovascular disease and cardiovascular drugs. Nat Rev Cardiol 19:59–74

    Article  PubMed  Google Scholar 

  38. Gandaglia G, Briganti A, Montorsi P, Mottrie A, Salonia A et al (2016) Diagnostic and therapeutic implications of erectile dysfunction in patients with cardiovascular disease. Eur Urol 70:219–222

    Article  PubMed  Google Scholar 

  39. De Leonardis F, Colalillo G, Finazzi Agro E, Miano R, Fuschi A et al (2022) Endothelial dysfunction, erectile deficit and cardiovascular disease: an overview of the pathogenetic links. Biomedicines 10:8–1848

    Article  Google Scholar 

  40. Muneer A, Kalsi J, Nazareth I, Arya M (2014) Erectile dysfunction. BMJ 348:g129

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82001740).

Author information

Authors and Affiliations

Authors

Contributions

SXZ and YJX conceived and designed the analysis; YJX, XYY, and JZ performed the analysis; SXZ, YJX, RTS and LKQ wrote the manuscript; SXZ and YJX reviewed the manuscript.

Corresponding author

Correspondence to Shengxiao Zhang.

Ethics declarations

Conflicts of interest

All authors declare no competing interests.

Research involving Human Participants and/or Animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Yin, X., Zhou, J. et al. Genetically predicted cardiovascular diseases could increase the risk of erectile dysfunction: a bidirectional Mendelian randomization. World J Urol 41, 3187–3194 (2023). https://doi.org/10.1007/s00345-023-04630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-023-04630-6

Keywords

Navigation