Skip to main content

Advertisement

Log in

Genetic polymorphisms on 8q24.1 and 4p16.3 are not linked with urothelial carcinoma of the bladder in contrast to their association with aggressive upper urinary tract tumours

  • Topic paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Bladder urothelial carcinoma (bladder-UC) displays distinct genotypic differences compared to upper tract UC (UTUC). We recently reported specific 8q24 SNP variants confer susceptibility to UTUC and aggressive disease features. Herein, we evaluate a bladder-UC cohort to see whether similar polymorphisms are linked similarly same way with disease risk and aggressiveness.

Methods

231 bladder-UC patients and 261 benign controls were matched for gender, age, ethnicity and smoking habits. We retrospectively retrieved information on tumour stage, grade, size, multiplicity, carcinoma in situ and tumour number. DNA was extracted from paraffin-embedded primary bladder-UC samples and blood of benign controls. Genotyping of rs9642880[T] (8q24.1) and rs798766[T] (4p16.3) was performed using commercially available Taqman® assays and the ABI™ 7000 Sequence Detector.

Results

Using a case–control analysis, bladder-UC risk was increased in individuals carrying the T/T genotype of rs9642880 [OR = 1.72 (95 % CI 1.1–2.8); p = 0.028] and rs798766 [OR = 1.84 (95 % CI 0.9–2.3); p = 0.01]. When analysing parameters of bladder-UC aggressiveness, the T/T genotypes for rs9642880 and rs798766 were not found to be associated with either grade [OR = 0.89 (95 % CI 0.52–1.32; p = 0.68) and OR = 0.95 (95 % CI 0.58–1.48; p = 0.61), respectively] or pathological stage [OR = 0.79 (95 % CI 0.42–1.48; p = 0.46) and OR = 0.90 (95 % CI 0.49–1.61; p = 0.72), respectively]. SNP variability of rs9642880[T] and rs798766[T] is associated with an increased risk of bladder-UC but we did not find an association with disease aggressiveness as we did previously for UTUC.

Conclusions

This is further evidence of the distinct genetic differences that exist between bladder-UC and UTUC, and it is not possible to extrapolate results of genetic studies between these two urothelial disease entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Catto JW, Yates DR, Rehman I et al (2007) Behavior of urothelial carcinoma with respect to anatomical location. J Urol 177:1715–1720

    Article  PubMed  CAS  Google Scholar 

  3. Catto JW, Azzouzi AR, Amira N et al (2003) Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene 22:8699–8706

    Article  PubMed  CAS  Google Scholar 

  4. Knowles MA (2008) Bladder cancer subtypes defined by genomic alterations. Scand J Urol Nephrol Suppl 218:116–130

    Article  PubMed  Google Scholar 

  5. Olfert SM, Felknor SA, Delclos GL (2006) An updated review of the literature: risk factors for bladder cancer with focus on occupational exposures. South Med J 99:1256–1263

    Article  PubMed  Google Scholar 

  6. Garcia-Closas M, Malats N, Silverman D et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish bladder cancer study and meta-analyses. Lancet 366:649–659

    Article  PubMed  CAS  Google Scholar 

  7. Gripp KW (2005) Tumor predisposition in Costello syndrome. Am J Med Genet C Semin Med Genet 137C:72–77

    Article  PubMed  Google Scholar 

  8. Aben KK, Witjes JA, Schoenberg MP et al (2002) Familial aggregation of urothelial cell carcinoma. Int J Cancer 98:274–278

    Article  PubMed  CAS  Google Scholar 

  9. McCullough DL, Lamm DL, McLaughlin AP et al (1975) Familial transitional cell carcinoma of the bladder. J Urol 113:629–635

    PubMed  CAS  Google Scholar 

  10. Kiemeney LA, van Houwelingen KP, Bogaerts M et al (2006) Polymorphisms in the E-cadherin (CDH1) gene promoter and the risk of bladder cancer. Eur J Cancer 42:3219–3227

    Article  PubMed  CAS  Google Scholar 

  11. Gudmundsson J, Sulem P, Manolescu A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637

    Article  PubMed  CAS  Google Scholar 

  12. Fletcher O, Johnson N, Gibson L et al (2008) Association of genetic variants at 8q24 with breast cancer risk. Cancer Epidemiol Biomark Prev 17:702–705

    Article  CAS  Google Scholar 

  13. Houlston RS, Cheadle J, Dobbins SE et al (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet 42:973–977

    Article  PubMed  CAS  Google Scholar 

  14. Kiemeney LA, Thorlacius S, Sulem P et al (2008) Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40:1307–1312

    Article  PubMed  CAS  Google Scholar 

  15. Rothman N, Garcia-Closas M, Chatterjee N et al (2010) A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet 42:978–984

    Article  PubMed  CAS  Google Scholar 

  16. Rafnar T, Sulem P, Stacey SN et al (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 41:221–227

    Article  PubMed  CAS  Google Scholar 

  17. Ghoussaini M, Song H, Koessler T et al (2008) Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 100:962–966

    Article  PubMed  CAS  Google Scholar 

  18. Kiemeney LA, Sulem P, Besenbacher S et al (2010) A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nat Genet 42:415–419

    Article  PubMed  CAS  Google Scholar 

  19. Roupret M, Cancel-Tassin G, Comperat E et al (2007) Phenol sulfotransferase SULT1A1*2 allele and enhanced risk of upper urinary tract urothelial cell carcinoma. Cancer Epidemiol Biomark Prev 16:2500–2503

    Article  CAS  Google Scholar 

  20. Zheng L, Wang Y, Schabath MB et al (2003) Sulfotransferase 1A1 (SULT1A1) polymorphism and bladder cancer risk: a case-control study. Cancer Lett 202:61–69

    Article  PubMed  CAS  Google Scholar 

  21. Hung RJ, Boffetta P, Brennan P et al (2004) GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer 110:598–604

    Article  PubMed  CAS  Google Scholar 

  22. Roupret M, Drouin SJ, Cancel-Tassin G et al (2012) Genetic variability in 8q24 confers susceptibility to urothelial carcinoma of the upper urinary tract and is linked with patterns of disease aggressiveness at diagnosis. J Urol 187:424–428

    Article  PubMed  CAS  Google Scholar 

  23. Roupret M, Catto J, Coulet F et al (2004) Microsatellite instability as indicator of MSH2 gene mutation in patients with upper urinary tract transitional cell carcinoma. J Med Genet 41:e91

    Article  PubMed  CAS  Google Scholar 

  24. Wang M, Zhang W, Yuan L et al (2009) Common genetic variants on 8q24 contribute to susceptibility to bladder cancer in a Chinese population. Carcinogenesis 30:991–996

    Article  PubMed  CAS  Google Scholar 

  25. Cortessis VK, Yuan JM, Van Den Berg D et al (2010) Risk of urinary bladder cancer is associated with 8q24 variant rs9642880[T] in multiple racial/ethnic groups: results from the Los Angeles-Shanghai case-control study. Cancer Epidemiol Biomark Prev 19:3150–3156

    Article  CAS  Google Scholar 

  26. Golka K, Selinski S, Lehmann ML et al (2011) Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol 85:539–554

    Article  PubMed  CAS  Google Scholar 

  27. Kiemeney LA, Grotenhuis AJ, Vermeulen SH et al (2009) Genome-wide association studies in bladder cancer: first results and potential relevance. Curr Opin Urol 19:540–546

    Article  PubMed  Google Scholar 

  28. Ioannidis JP, Thomas G, Daly MJ (2009) Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 10:318–329

    Article  PubMed  CAS  Google Scholar 

  29. Wu X, Ye Y, Kiemeney LA et al (2009) Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer. Nat Genet 41:991–995

    Article  PubMed  CAS  Google Scholar 

  30. Safarinejad MR, Shafiei N, Safarinejad SH (2011) The association between bladder cancer and a single nucleotide polymorphism (rs2854744) in the insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) gene. Arch Toxicol 85:1209–1218

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Yates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, D.R., Rouprêt, M., Drouin, S.J. et al. Genetic polymorphisms on 8q24.1 and 4p16.3 are not linked with urothelial carcinoma of the bladder in contrast to their association with aggressive upper urinary tract tumours. World J Urol 31, 53–59 (2013). https://doi.org/10.1007/s00345-012-0954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-012-0954-6

Keywords

Navigation