Skip to main content
Log in

Abstract

Drought stress (DS) is a recurrent and severe meteorological challenge affecting agricultural regions globally, leading to significant shifts in plant species distribution and substantial reductions in crop yields. The seasonal occurrence, intensity, and duration of DS vary in response to changing climatic conditions. Plants deploy various physio-biochemical and anatomical alterations to combat such conditions, including stomatal closure, modified root growth and architecture, shifts in metabolic pathways, and altered physiological responses. Moreover, metabolic shifts and physio-chemical adaptations under DS often shorten plant life cycles, reducing yields. Nevertheless, the impact of DS on plants depends on the soil water gradient, precipitation duration and degree, plant species, and developmental stage. This review elucidates the complex effects of DS on trait variations, highlighting the current knowledge on advances in genetic engineering, breeding, and agronomic approaches and exploring potential strategies to increase yield and develop drought-resistant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

As this is a review article, original data are not available.

References

  • Abid G, Jebara M, Debode F, Vertommen D, dit Ruys SP, Ghouili E, Jebara SH, Ouertani RN, El Ayed M, de Oliveira AC (2024) Comparative physiological, biochemical and proteomic analyses reveal key proteins and crucial regulatory pathways related to drought stress tolerance in faba bean (Vicia faba L.) leaves. Curr Plant Biol 37:100320

    Article  CAS  Google Scholar 

  • Adams HD, Zeppel MJ, Anderegg WR, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CDJ (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1:1285–1291

    Article  PubMed  Google Scholar 

  • Ahmadzai F, Shaukat K, Akram HM, ur Rehman Ansari M, Zahra N, Samad A, Nizar M, Hafeez MB, Raza A (2023) Evaluating the morpho-physiological responses of Stevia (Stevia rebaudiana) to foliar application of various plant growth promoters under drought stress. J Crop Health 76:181–194

    Article  Google Scholar 

  • Al Masruri MHK, Ullah A, Farooq M (2023) Application of nano chitosan-glycinebetaine for improving bread wheat performance under combined drought and heat stresses. J Soil Sci Plant Nutr 23:3482–3499. https://doi.org/10.1007/s42729-023-01265-9

    Article  CAS  Google Scholar 

  • Alotaibi F, Alharbi S, Alotaibi M, Al Mosallam M, Motawei M, Alrajhi A (2021) Wheat omics: classical breeding to new breeding technologies. Saudi J Biol Sci 28:1433–1444

    Article  CAS  PubMed  Google Scholar 

  • Al-Quraan NA, Al-Ajlouni ZI, Qawasma NF (2021) Physiological and biochemical characterization of the GABA shunt pathway in pea (Pisum sativum L.) seedlings under drought stress. Horticulturae 7:125

    Article  Google Scholar 

  • Ambrósio A, Portugal J, Souza K, Silva L, Dias D, Mantovani J, Magalhaes P, Souza T, Souza T (2020) A mixture of trehalose derivatives mitigates the adverse effects of water deficits in maize: an analysis of photosynthetic efficiency. Photosynthetica 58:808–818

    Article  Google Scholar 

  • Amjad S, Serajuddin M (2022) Role of nanosensors and bionanosensors in crop abiotic stress. In: Ansari SA, Ansari MI, Husen A (eds) Augmenting crop productivity in stress environment. Springer, Singapore, pp 1–12

    Google Scholar 

  • Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683

    Article  PubMed  Google Scholar 

  • Askarnejad MR, Soleymani A, Javanmard HR (2021) Barley (Hordeum vulgare L.) physiology including nutrient uptake affected by plant growth regulators under field drought conditions. J Plant Nutr 44:2201–2217

    CAS  Google Scholar 

  • Avalbaev A, Fedyaev V, Lubyanova A, Yuldashev R, Allagulova C (2024) 24-Epibrassinolide reduces drought-induced oxidative stress by modulating the antioxidant system and respiration in wheat seedlings. Plants 13:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169:1382–1396

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Zhang T, Zheng X, Li B, Qi X, Xu Y, Li L, Liang C (2023) Overexpression of a WRKY transcription factor McWRKY57-like from Mentha canadensis L. enhances drought tolerance in transgenic Arabidopsis. BMC Plant Biol 23:1–13

    Article  CAS  Google Scholar 

  • Bali A, Rawal S, Singla K (2023) Challenges and strategies to improve drought tolerance in plants through agronomic managements. In: Kumar A, Dhansu P, Mann A (eds) Salinity and drought tolerance in plants. Springer, Singapore, pp 491–506

    Chapter  Google Scholar 

  • Bartoli CG, Gomez F, Gergoff G, Guiamét JJ, Puntarulo S (2005) Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot 56:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Bárzana G, Carvajal M (2020) Genetic regulation of water and nutrient transport in water stress tolerance in roots. J Biotechnol 324:134–142

    Article  PubMed  Google Scholar 

  • Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, Abid M, Rizwan M, Shahid MR, Alotaibi M (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10:16975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum N, Roy R, Rahim HU, Chang F, Zhao T (2022) Mechanistic insights into mulching and plant physiological attributes under abiotic stresses. In: Akhtar K, Arif M, Riaz M, Wang H (eds) Mulching in agroecosystems. Springer, Singapore, pp 103–121

    Chapter  Google Scholar 

  • Benešová M, Hola D, Fischer L, Jedelský PL, Hnilička F, Wilhelmová N, Rothova O, Kočová M, Prochazkova D, Honnerova J (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7:e38017

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatta M, Morgounov A, Belamkar V, Baenziger PS (2018) Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. Int J Mol Sci 19:3011

    Article  PubMed  PubMed Central  Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijanzadeh E, Naderi R, Egan TP (2019) Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L.) hybrids. J Plant Nutr 42:1483–1495

    Article  CAS  Google Scholar 

  • Bisht S, Sharma V, Kumari N (2022) Biosynthesized hematite nanoparticles mitigate drought stress by regulating nitrogen metabolism and biological nitrogen fixation in Trigonella foenum-graecum. Plant Stress 6:100112

    Article  CAS  Google Scholar 

  • Bista DR, Heckathorn SA, Jayawardena DM, Mishra S, Boldt JK (2018) Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Bistgani ZE, Barker AV, Hashemi M (2024) Physiology of medicinal and aromatic plants under drought stress. Crop J. https://doi.org/10.1016/j.cj.2023.12.003

    Article  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm FJ (2006) Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant Cell Environ 29:2153–2167

    Article  CAS  PubMed  Google Scholar 

  • Burridge JD, Grondin A, Vadez V (2022) Optimizing crop water use for drought and climate change adaptation requires a multi-scale approach. Front Plant Sci 13:824720

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai G, Wang G, Wang L, Liu Y, Pan J, Li D (2014) A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. J Plant Physiol 171:1003–1016

    Article  CAS  PubMed  Google Scholar 

  • Carminati A, Benard P, Ahmed MA, Zarebanadkouki M (2017) Liquid bridges at the root-soil interface. Plant Soil 417:1–15

    Article  CAS  Google Scholar 

  • Chandrasekaran M (2022) Arbuscular mycorrhizal fungi mediated enhanced biomass, root morphological traits and nutrient uptake under drought stress: a meta-analysis. J Fungi 8:660

    Article  CAS  Google Scholar 

  • Chen J, Xue B, Xia X, Yin W (2013) A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochem Biophys Res Commun 441:630–636

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wang Z, Yang Y, Li M, Xu B (2018) Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Sci Hortic 228:1–9

    Article  CAS  Google Scholar 

  • Chen X, Zhao P, Ouyang L, Zhu L, Ni G, Schäfer KV (2020) Whole-plant water hydraulic integrity to predict drought-induced Eucalyptus urophylla mortality under drought stress. For Ecol Manag 468:118179

    Article  Google Scholar 

  • Chen L, Zhang B, Xia L, Yue D, Han B, Sun W, Wang F, Lindsey K, Zhang X, Yang X (2023) The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. J Adv Res 51:13–25

    Article  PubMed  Google Scholar 

  • Chen Y, Wu D, Zhang Y, Du Y, Wang M, Liu J, Chu J, Yao X (2024) Brassinolide alleviated drought stress faced by bulbil formation of Pinellia ternata by reducing ROS metabolism and enhancing AsA-GSH cycle. Sci Hortic 323:112525

    Article  CAS  Google Scholar 

  • Cheng M, Wang Z, Cao Y, Zhang J, Yu H, Wang S, Zhou Z, Hu W (2024) Soil drought during the development of cotton ovule destroyed the antioxidant balance of cotton pistil to hinder the ovule formation. J Agron Crop Sci 210:e12695

    Article  CAS  Google Scholar 

  • Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE 10:e0143022

    Article  PubMed  PubMed Central  Google Scholar 

  • Chun J, Li F, Ma Y, Wang S, Chen F (2014) Cloning and characterization of a SnRK2 gene from Jatropha curcas L. Genet Mol Res 13:10958–10975

    Article  CAS  PubMed  Google Scholar 

  • Coussement JR, Villers SL, Nelissen H, Inzé D, Steppe KJ (2021) Turgor-time controls grass leaf elongation rate and duration under drought stress. Plant Cell Environ 44:1361–1378

    Article  CAS  PubMed  Google Scholar 

  • da Silva EC, Nogueira R, da Silva MA, de Albuquerque MB (2011) Drought stress and plant nutrition. Plant Stress 5:32–41

    Google Scholar 

  • Dahal K, Vanlerberghe GC (2017) Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought. New Phytol 213:560–571

    Article  CAS  PubMed  Google Scholar 

  • Danquah FO, Twumasi MA, Asare I (2019) Factors influencing Zai pit technology adaptation: the case of smallholder farmers in the upper east region of Ghana. Agric Res Technol 21:13–24

    Google Scholar 

  • Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V (2017) Poplar Ptab ZIP 1-like enhances lateral root formation and biomass growth under drought stress. The Plant J 89:692–705

    Article  CAS  PubMed  Google Scholar 

  • de Miguel M, Guevara MÁ, Sánchez-Gómez D, De María N, Díaz LM, Mancha JA, De Simón BF, Cadahía E, Desai N, Aranda I (2016) Organ-specific metabolic responses to drought in Pinus pinaster Ait. Plant Physiol Biochem 102:17–26

    Article  PubMed  Google Scholar 

  • Dey A, Samanta MK, Gayen S, Sen SK, Maiti MK (2016a) Enhanced gene expression rather than natural polymorphism in coding sequence of the OsbZIP23 determines drought tolerance and yield improvement in rice genotypes. PLoS ONE 11:e0150763

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey A, Samanta MK, Gayen S, Maiti MK (2016b) The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol 16:1–20

    Article  Google Scholar 

  • Dias M, Brüggemann W (2007) Differential inhibition of photosynthesis under drought stress in Flaveria species with different degrees of development of the C 4 syndrome. Photosynthetica 45:75–84

    Article  Google Scholar 

  • Dietz KJ, Zörb C, Geilfus CM (2021) Drought and crop yield. Plant Biol 23:881–893

    Article  PubMed  Google Scholar 

  • Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2019) Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ 688:926–934

    Article  CAS  PubMed  Google Scholar 

  • Driever SM, Baker NRJ (2011) The water–water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. Plant Cell Environ 34:837–846

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F (2020) Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem 146:1–12

    Article  CAS  PubMed  Google Scholar 

  • Du X, Zhang X, Chen X, Jin W (2024) Drought stress reduces the photosynthetic source of subtending leaves and the transit sink function of podshells, leading to reduced seed weight in soybean plants. Front Plant Sci 15:1337544

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2015) VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J Plant Physiol 185:1–12

    Article  CAS  PubMed  Google Scholar 

  • Đurić M, Subotić A, Prokić L, Trifunović-Momčilov M, Milošević S (2023) Alterations in physiological, biochemical, and molecular responses of Impatiens walleriana to drought by methyl jasmonate foliar application. Genes 14:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Arora A, Singh V, Singh G (2018) Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: membrane stability, water relations and photosynthesis. Photosynthetica 56:478–486

    Article  CAS  Google Scholar 

  • El-Ramady H, Abdalla N, Kovacs S, Domokos-Szabolcsy E, Bákonyi N, Fari M, Geilfus C-M (2020) Sustainable biorefinery and production of alfalfa (Medicago sativa L.). Egypt J Bot 60:621–639

    Google Scholar 

  • Fàbregas N, Fernie AR (2019) The metabolic response to drought. J Exp Bot 70:1077–1085

    Article  PubMed  Google Scholar 

  • Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, Fang S, Chu J, Li S, Xin H (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67:2829–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Yang H, Wei G, Shen T, Wan Z, Wang M, Wang X, Wu Z (2022) Potassium application enhances drought tolerance in sesame by mitigating oxidative damage and regulating osmotic adjustment. Front Plant Sci 13:1096606

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2018) Disasters causing billions in agricultural losses, with drought leading the way. (Rome, 2018). www.fao.org/news/story/en/item/1106977/icode/

  • Farooq M (2023) Tolerance against combined drought and heat stresses in wheat landraces of Omani origin: morphological, physiological, biochemical, and grain yield assessment. J Soil Sci Plant Nutr 23:6034–6047. https://doi.org/10.1007/s42729-023-01462-6

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009a) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq M, Wahid A, Ito O, Lee DJ, Siddique KHM (2009b) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945. https://doi.org/10.1007/s11738-009-0307-2

    Article  CAS  Google Scholar 

  • Farooq M, Hussain M, Siddique KHM (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    Article  CAS  Google Scholar 

  • Farooq S, Shahid M, Khan MB, Hussain M, Farooq M (2015) Improving the productivity of bread wheat by good management practices under terminal drought. J Agron Crop Sci 201:173–188

    Article  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KHM (2017) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203:81–102

    Article  Google Scholar 

  • Farooq M, Almamari SAD, Rehman A, Al-Busaidi WM, Wahid A, Al-Ghamdi SS (2021) Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean. Sci Hortic 281:109894

    Article  CAS  Google Scholar 

  • Farquharson KL (2017) Fine-tuning plant growth in the face of drought. Plant Cell. https://doi.org/10.1105/tpc.17.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Galmes J, Ribas-Carbo M, Medrano H (2005) The effects of water stress on plant respiration. In: Lambers H, Ribas-Carbo M (eds) Plant respiration. Advances in photosynthesis and respiration, vol 18. Springer, Dordrecht, pp 85–94

    Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Gautam T, Amardeep SG, Rakhi KA, Gahlaut V, Gadekar D, Oak M, Sharma P, Balyan H (2021) Introgression of a drought insensitive grain yield QTL for improvement of four Indian bread wheat cultivars using marker assisted breeding without background selection. J Plant Biochem Biotechnol 30:172–183

    Article  CAS  Google Scholar 

  • Gedil M, Menkir A (2019) An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa. Front Plant Sci 10:1430

    Article  PubMed  PubMed Central  Google Scholar 

  • Gersony JT, Holbrook NM (2022) Phloem turgor is maintained during severe drought in Ricinus communis. Plant Cell Environ 45:2898–2905

    Article  CAS  PubMed  Google Scholar 

  • Ghadirnezhad Shiade SR, Fathi A, Taghavi Ghasemkheili F, Amiri E, Pessarakli M (2023) Plants’ responses under drought stress conditions: effects of strategic management approaches—a review. J Plant Nutr 46:2198–2230

    Article  CAS  Google Scholar 

  • Ghalkhani A, Golzardi F, Khazaei A, Mahrokh A, Illés Á, Bojtor C, Mousavi SMN, Széles A (2023) Irrigation management strategies to enhance forage yield, feed value, and water-use efficiency of sorghum cultivars. Plants 12:2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gondal MR, Saleem MY, Rizvi SA, Riaz A, Naseem W, Muhammad G, Hayat S, Iqbal M (2021) Assessment of drought tolerance in various cotton genotypes under simulated osmotic settings. Asian J Agric Biol 2021:202008437

    Google Scholar 

  • González-Meler M, Matamala R, Penuelas J (1998) Effects of prolonged drought stress and nitrogen deficiency on the respiratory O2 uptake of bean and pepper leaves. Photosynthetica 34:505–512

    Article  Google Scholar 

  • Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H (2018) Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 10:016

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Gahlaut V (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7:5

    Article  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Sci Total Environ 368:266–269

    CAS  Google Scholar 

  • Hageman AN, Urban MO, Van Volkenburgh E (2020) Sensitivity of leaflet growth rate to drought predicts yield in common bean (Phaseolus vulgaris). Funct Plant Biol 47:792–802

    Article  CAS  PubMed  Google Scholar 

  • Hasan MM, Liu X-D, Yao G-q, Liu J, Fang X-W (2024) Ethylene-mediated stomatal responses to dehydration and rehydration in seed plants. J Exp Bot erae060

  • Hasibeder R, Fuchslueger L, Richter A, Bahn M (2015) Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytol 205:1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Hassan N, Ebeed H, Aljaarany A (2020) Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol Mol Biol Plants 26:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan MA, Dahu N, Hongning T, Qian Z, Yueming Y, Yiru L, Shimei WJ (2023) Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Front Plant Sci 14:1215371

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Li W, Lv J, Jia Y, Wang M, Xia G (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • He G-H, Xu J-Y, Wang Y-X, Liu J-M, Li P-S, Chen M, Ma Y-Z, Xu Z-S (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:1–16

    Article  Google Scholar 

  • He J, Hu W, Li Y, Zhu H, Zou J, Wang Y, Meng Y, Chen B, Zhao W, Wang S (2022) Prolonged drought affects the interaction of carbon and nitrogen metabolism in root and shoot of cotton. Environ Exp Bot 197:104839

    Article  CAS  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Ann Rev Plant Biol 65:715–741

    Article  CAS  Google Scholar 

  • Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154:357–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag 201:152–166

    Article  Google Scholar 

  • Hussain MM, Rauf S, Warburton ML (2019) Development of drought-tolerant breeding lines derived from Helianthus annuus × H. argophyllus interspecific crosses. Plant Breed 138:862–870

    Article  CAS  Google Scholar 

  • Jan AU, Hadi F, Ditta A, Suleman M, Ullah M (2022) Zinc-induced anti-oxidative defense and osmotic adjustments to enhance drought stress tolerance in sunflower (Helianthus annuus L.). Environ Exp Bot 193:104682

    Article  CAS  Google Scholar 

  • Javed A, Ahmad N, Ahmed J, Hameed A, Ashraf MA, Zafar SA, Maqbool A, Al-Amrah H, Alatawi HA, Al-Harbi MS (2022) Grain yield, chlorophyll and protein contents of elite wheat genotypes under drought stress. J King Saud Univ 34:102279

    Article  Google Scholar 

  • Jiang S, Zhang D, Wang L, Pan J, Liu Y, Kong X, Zhou Y, Li D (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120

    Article  CAS  PubMed  Google Scholar 

  • Jiao K, Han J, Guo B, Wu Y, Zhang L, Li Y, Song P, Han D, Duan Y, Li X (2023) MbNAC22, a Malus baccata NAC transcription factor, increased drought and salt tolerance in arabidopsis. Agronomy 13:1374

    Article  CAS  Google Scholar 

  • Jurado-Mañogil C, Martínez-Melgarejo PA, Martínez-García P, Rubio M, Hernández JA, Barba-Espín G, Diaz-Vivancos P, Martínez-García PJ (2024) Comprehensive study of the hormonal, enzymatic and osmoregulatory response to drought in Prunus species. Sci Hortic 326:112786

    Article  Google Scholar 

  • Juzoń K, Czyczyło-Mysza I, Marcińska I, Dziurka M, Waligórski P, Skrzypek E (2017) Polyamines in yellow lupin (Lupinus luteus L.) tolerance to soil drought. Acta Physiologiae Plantarum 39:202. https://doi.org/10.1007/s11738-017-2500-z

    Article  CAS  Google Scholar 

  • Kang T, Yu C-Y, Liu Y, Song W-M, Bao Y, Guo X-T, Li B, Zhang H-X (2020) Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Front Plant Sci 10:1664

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl Sci 10:5692

    Article  CAS  Google Scholar 

  • Kareem F, Rihan H, Fuller M (2017) The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. Agric Res Technol. https://doi.org/10.19080/ARTOAJ.2017.09.555768

    Article  Google Scholar 

  • Kaur H, Manna M, Thakur T, Gautam V, Salvi P (2021) Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol Plant 171:833–848

    Article  CAS  PubMed  Google Scholar 

  • Kausar A, Zahra N, Zahra H, Hafeez MB, Zafer S, Shahzadi A, Raza A, Djalovic I, Prasad PV (2023a) Alleviation of drought stress through foliar application of thiamine in two varieties of pea (Pisum sativum L.). Plant Signal Behav 18:2186045

    Article  PubMed  PubMed Central  Google Scholar 

  • Kausar A, Zahra N, Tahir H, Hafeez MB, Abbas W, Raza A (2023b) Modulation of growth and biochemical responses in spinach (Spinacia oleracea L.) through foliar application of some amino acids under drought conditions. S Afr J Bot 158:243–253

    Article  CAS  Google Scholar 

  • Kerr TC, Abdel-Mageed H, Aleman L, Lee J, Payton P, Cryer D, Allen RD (2018) Ectopic expression of two AREB/ABF orthologs increases drought tolerance in cotton (Gossypium hirsutum). Plant Cell Environ 41:898–907

    Article  CAS  PubMed  Google Scholar 

  • Khamsuk O, Sonjaroon W, Suwanwong S, Jutamanee K, Suksamrarn A (2018) Effects of 24-epibrassinolide and the synthetic brassinosteroid mimic on chili pepper under drought. Acta Physiol Plant 40:1–12

    Article  CAS  Google Scholar 

  • Khasanova A, James JJ, Drenovsky RE (2013) Impacts of drought on plant water relations and nitrogen nutrition in dryland perennial grasses. Plant Soil 372:541–552

    Article  CAS  Google Scholar 

  • Kim W, Iizumi T, Nishimori M (2019) Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteorol Climatol 58:1233–1244

    Article  Google Scholar 

  • Kirigwi F, Van Ginkel M, Brown-Guedira G, Gill B, Paulsen GM, Fritz A (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kirova E, Pecheva D, Simova-Stoilova L (2021) Drought response in winter wheat: protection from oxidative stress and mutagenesis effect. Acta Physiol Plant 43:1–11

    Article  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dixit S, Ram T, Yadaw R, Mishra K, Mandal N (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65:6265–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lephatsi M, Nephali L, Meyer V, Piater LA, Buthelezi N, Dubery IA, Opperman H, Brand M, Huyser J, Tugizimana F (2022) Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Sci Rep 12:10450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Feng B, Zhang F, Tang Y, Zhang L, Ma L, Zhao C, Gao S (2016) Bioinformatic analyses of subgroup—a members of the wheat bZIP transcription factor family and functional identification of TabZIP174 involved in drought stress response. Front Plant Sci 7:1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Xing C, Yao Z, Huang X (2017a) Pbr MYB 21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J 15:1186–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Cai H, Liu P, Wang C, Gao H, Wu C, Yan K, Zhang S, Huang J, Zheng C (2017b) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun 484:292–297

    Article  CAS  PubMed  Google Scholar 

  • Li T, Fan P, Yun Z, Jiang G, Zhang Z, Jiang Y (2019) β-aminobutyric acid priming acquisition and defense response of mango fruit to Colletotrichum gloeosporioides infection based on quantitative proteomics. Cells 8:1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhu Y, Song X, Song F (2020) Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of Hybrid Pennisetum. Plant Physiol Biochem 155:93–104

    Article  CAS  PubMed  Google Scholar 

  • Li H, Testerink C, Zhang Y (2021) How roots and shoots communicate through stressful times. Trends Plant Sci 26:940–952

    Article  CAS  PubMed  Google Scholar 

  • Li C, Bao Y, Guo W, Li C, Li C (2024a) Multi-omics analysis of response mechanism of programmed cell death in wheat endosperm to post-anthesis drought stress. Environ Exp Bot 218:105614

    Article  CAS  Google Scholar 

  • Li J, Liang Z, Li Y, Wang K, Nangia V, Mo F, Liu Y (2024b) Advantageous spike-to-stem competition for assimilates contributes to the reduction in grain number loss in wheat spikes under water deficit stress. Agric Water Manag 292:108675

    Article  Google Scholar 

  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019) Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Hortic 246:34–43

    Article  CAS  Google Scholar 

  • Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T (2017) Overexpression of Ms DREB 6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89:510–526

    Article  CAS  PubMed  Google Scholar 

  • Lima Neto MC, Silveira JAG, Cerqueira JV, Cunha JR (2017) Regulation of the photosynthetic electron transport and specific photoprotective mechanisms in Ricinus communis under drought and recovery. Acta Physiol Plant 39:1–12

    Article  CAS  Google Scholar 

  • Linghu B, Xu Z, Chu Y, Yan Y, Nie X, Weining S (2023) Genome-wide analysis of calcium-dependent protein kinase (CDPK) family and functional characterization of TaCDPK25-U in response to drought stress in wheat. Environ Exp Bot 209:105277

    Article  CAS  Google Scholar 

  • Liu X, Zhang W, Wang X, Cai Y, Chang J (2015) Root–soil air gap and resistance to water flow at the soil–root interface of Robinia pseudoacacia. Tree Physiol 35:1343–1355

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Song Y, Xing F, Wang N, Wen F, Zhu C (2016) GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265–1281

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Guo Y, Bai Y, Camberato J, Xue J, Zhang R (2018) Effects of drought stress on the photosynthesis in maize. Russ J Plant Physiol 65:849–856

    Article  CAS  Google Scholar 

  • Liu B, Liang J, Tang G, Wang X, Liu F, Zhao D (2019) Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Sci Hortic 250:230–235

    Article  CAS  Google Scholar 

  • Liu R, Huang S, Huang A, Chen M, Luo Y, Guo Z, Lu S (2023a) Overexpression of CdtCIPK21 from triploid bermudagrass reduces salt and drought tolerance but increases chilling tolerance in transgenic rice. J Plant Physiol 286:154006

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cao L, Wu X, Wang S, Zhang P, Li M, Jiang J, Ding X, Cao X (2023b) Functional characterization of wild soybean (Glycine soja) GsSnRK1. 1 protein kinase in plant resistance to abiotic stresses. J Plant Physiol 280:153881

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS ONE 8:e68503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G, Wang L, Zhou L, Su X, Guo H, Cheng H (2022) Overexpression of AmCBF1 enhances drought and cold stress tolerance, and improves photosynthesis in transgenic cotton. PeerJ 10:e13422

    Article  PubMed  PubMed Central  Google Scholar 

  • Malan C, Berner J (2022) Comparative PSII photochemistry of quinoa and maize under mild to severe drought stress. Photosynthetica 60(3):362–371

    Article  Google Scholar 

  • Mansour E, Desoky E-SM, Ali MM, Abdul-Hamid MI, Ullah H, Attia A, Datta A (2021) Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric Water Manag 247:106754

    Article  Google Scholar 

  • Mazhar MW, Ishtiaq M, Hussain I, Parveen A, Hayat Bhatti K, Azeem M, Thind S, Ajaib M, Maqbool M, Sardar T (2022) Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PLoS ONE 17:e0264967

    Article  Google Scholar 

  • Mercado-Reyes JA, Pereira TS, Manandhar A, Rimer IM, McAdam SA (2024) Extreme drought can deactivate ABA biosynthesis in embolism-resistant species. Plant Cell Environ 47:497–510

    Article  CAS  PubMed  Google Scholar 

  • Min X, Lin X, Ndayambaza B, Wang Y, Liu W (2020) Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. BMC Plant Biol 20:1–21

    Article  Google Scholar 

  • Mohanabharathi M, Sritharan N, Senthil A, Ravikesavan R (2019) Physiological studies for yield enhancement in finger millet under drought condition. J Pharmacogn Phytochem 8:3308–3312

    CAS  Google Scholar 

  • Mosenda E, Chemining’wa GN, Ambuko J, Owino W (2020) Assessment of agronomic traits of selected spider plant (Cleome gynandra L.) accessions. J Med Active Plants 9:222–241

    Google Scholar 

  • Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS (2021) A manipulative interplay between positive and negative regulators of phytohormones: a way forward for improving drought tolerance in plants. Physiol Plant 172:1269–1290

    Article  CAS  PubMed  Google Scholar 

  • Mulugeta SM, Radácsi P (2022) Influence of drought stress on growth and essential oil yield of Ocimum species. Horticulturae 8:175

    Article  Google Scholar 

  • Najafabadi MY, Ehsanzadeh P (2017) Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica 55:611–622

    Article  Google Scholar 

  • Nandy S, Mandal S, Gupta SK, Anand U, Ghorai M, Mundhra A, Rahman MH, Ray P, Mitra S, Ray D, Lal MK et al (2023) Role of polyamines in molecular regulation and cross-talks against drought tolerance in plants. J Plant Growth Regul 42:4901–4917

    Article  CAS  Google Scholar 

  • Nansamba M, Sibiya J, Tumuhimbise R, Karamura D, Kubiriba J, Karamura E (2020) Breeding banana (Musa spp.) for drought tolerance: a review. Plant Breed 139:685–696

    Article  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34:1527–1536

    Article  CAS  Google Scholar 

  • Nawaz M, Wang Z (2020) Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: a new insight. Sci Rep 10:1–10

    Article  Google Scholar 

  • Nazir F, Peter P, Gupta R, Kumari S, Nawaz K, Khan MIR (2024) Plant hormone ethylene: a leading edge in conferring drought stress tolerance. Physiol Plant 176:e14151

    Article  CAS  Google Scholar 

  • Niu T, Zhang T, Qiao Y, Wen P, Zhai G, Liu E, Al-Bakre DA, Al-Harbi MS, Gao X, Yang X (2021) Glycinebetaine mitigates drought stress-induced oxidative damage in pears. PLoS ONE 16:e0251389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu S, Gu X, Zhang Q, Tian X, Chen Z, Liu J, Wei X, Yan C, Liu Z, Wang X (2023) Grapevine bZIP transcription factor bZIP45 regulates VvANN1 and confers drought tolerance in Arabidopsis. Front Plant Sci 14:1128002

    Article  PubMed  PubMed Central  Google Scholar 

  • Noaman M, Ahmed I, El-Sayed A, Abo-El-Enin R, El-Gamal A, El-Sherbiny A, Asaad F, El-Hag A, Moustafa KA, El-Bawab A (2007) Registration of ‘Giza 2000’drought-tolerant six-rowed barley for rainfed and new reclaimed areas in Egypt. Crop Sci 47:440–440

    Google Scholar 

  • Noein B, Soleymani A (2022) Corn (Zea mays L.) physiology and yield affected by plant growth regulators under drought stress. J Plant Growth Regul 41:672–681

    Article  CAS  Google Scholar 

  • O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014) Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat Clim Change 4:710–714

    Article  Google Scholar 

  • Oliveira PNd, Matias F, Martínez-Andújar C, Martinez-Melgarejo PA, Prudencio ÁS, Galeano E, Pérez-Alfocea F, Carrer H (2023) Overexpression of TgERF1, a transcription factor from Tectona grandis, increases tolerance to drought and salt stress in tobacco. Int J Mol Sci 24:4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey J, Devadasu E, Saini D, Dhokne K, Marriboina S, Raghavendra AS, Subramanyam R (2023) Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. Plant J 113:60–74

    Article  CAS  PubMed  Google Scholar 

  • Park J-R, Kim E-G, Jang Y-H, Jan R, Farooq M, Ubaidillah M, Kim K-M (2022) Applications of CRISPR/Cas9 as new strategies for short breeding to drought gene in rice. Front Plant Sci 13:850441

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng C, Uygun S, Shiu S-H, Last RL (2015) The impact of the branched-chain ketoacid dehydrogenase complex on amino acid homeostasis in Arabidopsis. Plant Physiol 169:1807–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prathap V, Tyagi A (2020) Correlation between expression and activity of ADP glucose pyrophosphorylase and starch synthase and their role in starch accumulation during grain filling under drought stress in rice. Plant Physiol Biochem 157:239–243

    Article  Google Scholar 

  • Prerostova S, Dobrev PI, Körber N, Pieruschka R, Fiorani F, Brzobohatý B, Spichal L, Vanek T, Schurr U, Vankova R (2018) Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Front Plant Sci 9:364534

    Article  Google Scholar 

  • Prodhan FA, Zhang J, Sharma TPP, Nanzad L, Zhang D, Seka AM, Ahmed N, Hasan SS, Hoque MZ, Mohana HP (2022) Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Sci Total Environ 807:151029

    Article  CAS  PubMed  Google Scholar 

  • Rabara RC, Tripathi P, Reese RN, Rushton DL, Alexander D, Timko MP, Shen QJ, Rushton PJ (2015) Tobacco drought stress responses reveal new targets for Solanaceae crop improvement. BMC Genom 16:1–23

    Article  CAS  Google Scholar 

  • Rady MM, Boriek SH, Abd El-Mageed TA, Seif El-Yazal MA, Ali EF, Hassan FA, Abdelkhalik A (2021) Exogenous gibberellic acid or dilute bee honey boosts drought stress tolerance in Vicia faba by rebalancing osmoprotectants, antioxidants, nutrients, and phytohormones. Plants 10:748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai N, Bellundagi A, Kumar PK, Kalasapura Thimmappa R, Rani S, Sinha N, Krishna K, Jain N, Singh GP, Singh PK (2018) Marker-assisted backcross breeding for improvement of drought tolerance in bread wheat (Triticum aestivum L. em Thell). Plant Breed 137:514–526

    Article  CAS  Google Scholar 

  • Rakhmankulova Z (2022) Plant respiration and global climatic changes. Russ J Plant Physiol 69:109

    Article  CAS  Google Scholar 

  • Ravikumar G, Manimaran P, Voleti S, Subrahmanyam D, Sundaram R, Bansal K, Viraktamath B, Balachandran S (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23:421–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza MAS, Zaheer MS, Saleem MF, Khan IH, Ahmad S, Iqbal R (2020) Drought ameliorating effect of exogenous applied cytokinin in wheat. Pak J Agric Sci 57:725–733

    Google Scholar 

  • Ren C, Li Z, Song P, Wang Y, Liu W, Zhang L, Li X, Li W, Han D (2023) Overexpression of a grape MYB transcription factor gene VhMYB2 increases salinity and drought tolerance in Arabidopsis thaliana. Int J Mol Sci 24:10743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J (2005) Effects of water stress on respiration in soybean leaves. Plant Physiol 139:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor Ta ERF 3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  CAS  PubMed  Google Scholar 

  • Sakya A, Sulistyaningsih E, Indradewa D, Purwanto B (2018) Physiological characters and tomato yield under drought stress. IOP Conference Series: Earth and Environmental Science. IOP Publishing, p 012043

  • Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M (2019) Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 10:4021

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanaullah M, Rumpel C, Charrier X, Chabbi A (2012) How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant Soil 352:277–288

    Article  CAS  Google Scholar 

  • Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka JJ (2012) Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ 35:136–149

    Article  CAS  PubMed  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Secchi F, Bevilacqua I, Agliassa C, Maghrebi M, Cavalletto S, Morabito C, Lembo S, Vigani G (2023) Alkaline soil primes the recovery from drought in Populus nigra plants through physiological and chemical adjustments. Plant Physiol Biochem 201:107838

    Article  CAS  PubMed  Google Scholar 

  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevanto S (2018) Drought impacts on phloem transport. Curr Opin Plant Biol 43:76–81

    Article  PubMed  Google Scholar 

  • Shaffique S, Farooq M, Kang S-M, Lee I-J (2024) Recent advances in biochemical reprogramming network under drought stress in soybean. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-024-01711-2

    Article  Google Scholar 

  • Shareef M, Gui D, Zeng F, Ahmed Z, Waqas M, Zhang B, Iqbal H, Fiaz M (2018) Impact of drought on assimilates partitioning associated fruiting physiognomies and yield quality attributes of desert grown cotton. Acta Physiol Plant 40:1–12

    Article  CAS  Google Scholar 

  • Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675

    Article  CAS  PubMed  Google Scholar 

  • Shinwari ZK, Jan SA, Nakashima K, Yamaguchi-Shinozaki K (2020) Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol Rep 14:151–162

    Article  Google Scholar 

  • Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2015) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica 203:449–467

    Article  CAS  Google Scholar 

  • Sobahan MA, Akter N, Okuma E, Uraji M, Ye W, Mori IC, Nakamura Y, Murata Y (2015) Allyl isothiocyanate induces stomatal closure in Vicia faba. Biosci Biotechnol Biochem 79:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Sohag AAM, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, Hossain MA, Hossain MA (2020) Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ 66:7–13

    Article  Google Scholar 

  • Srivastava RK, Yadav O, Kaliamoorthy S, Gupta S, Serba DD, Choudhary S, Govindaraj M, Kholová J, Murugesan T, Satyavathi CT (2022) Breeding drought-tolerant pearl millet using conventional and genomic approaches: achievements and prospects. Front Plant Sci 13:781524

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun M, Xu Q-Y, Zhu Z-P, Liu P-Z, Yu J-X, Guo Y-X, Tang S, Yu Z-F, Xiong A-S (2023) AgMYB5, an MYB transcription factor from celery, enhanced β-carotene synthesis and promoted drought tolerance in transgenic Arabidopsis. BMC Plant Biol 23:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tak H, Negi S, Ganapathi T (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803–816

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Guo J, Jagadish SK, Yang S, Qiao J, Wang Y, Xie K, Wang H, Yang Q, Deng L (2023) Ovary abortion in field-grown maize under water-deficit conditions is determined by photo-assimilation supply. Field Crops Res 293:108830

    Article  Google Scholar 

  • Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira KS, Takebayashi Y, Kojima M, Sakakibara H (2017) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J 90:61–78

    Article  CAS  PubMed  Google Scholar 

  • Trnka M, Feng S, Semenov MA, Olesen JE, Kersebaum KC, Rötter RP, Semerádová D, Klem K, Huang W, Ruiz-Ramos M (2019) Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Sci Adv 5:eaau2406

    Article  PubMed  PubMed Central  Google Scholar 

  • Ul-Allah S, Farooq M (2023) Drought management of crop farming. In: Zhang Q (ed) Encyclopedia of smart agriculture technologies. Springer, Switzerland. https://doi.org/10.1007/978-3-030-89123-7_261-1

    Chapter  Google Scholar 

  • Ullah A, Farooq M (2022) The challenge of drought stress for grain legumes and options for improvement. Arch Agron Soil Sci 68:1601–1618. https://doi.org/10.1080/03650340.2021.1906413

    Article  CAS  Google Scholar 

  • Ullah A, Romdhane L, Rehman A, Farooq M (2019) Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiol Biochem 143:11–18

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Al-Rajhi RS, Al-Sadi AM, Farooq M (2021) Wheat genotypes with higher intercellular CO2 concentration, rate of photosynthesis, and antioxidant potential can better tolerate drought stress. J Soil Sci Plant Nutr 21:2378–2391. https://doi.org/10.1007/s42729-021-00529-6

    Article  CAS  Google Scholar 

  • Ullah A, Al-Busaidi WM, Al-Sadi AM, Farooq M (2022) Bread wheat genotypes accumulating free proline and phenolics can better tolerate drought stress through sustained rate of photosynthesis. J Soil Sci Plant Nutr 22:165–176. https://doi.org/10.1007/s42729-021-00641-7

    Article  CAS  Google Scholar 

  • Ullah A, Tariq A, Zeng F, Asghar M, Sardans J, Peñuelas J (2024) Drought priming reduces Calligonum mongolicum sensitivity to recurrent droughts via coordinated regulation of osmolytes, antioxidants, and hormones. Plant Biol. https://doi.org/10.1111/plb.13619

    Article  PubMed  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Pro Natl Acad Sci USA 101:17306–17311

    Article  CAS  Google Scholar 

  • Vereecken H, Amelung W, Bauke SL, Bogena H, Brüggemann N, Montzka C, Vanderborght J, Bechtold M, Blöschl G, Carminati A (2022) Soil hydrology in the Earth system. Nat Rev Earth Enviro Int 3:573–587

    Article  Google Scholar 

  • Virk N, Li D, Tian L, Huang L, Hong Y, Li X, Zhang Y, Liu B, Zhang H, Song F (2015) Arabidopsis Raf-like mitogen-activated protein kinase kinase kinase gene Raf43 is required for tolerance to multiple abiotic stresses. PLoS ONE 10:e0133975

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu Y, Cai G, Jiang S, Pan J, Li D (2014) Ectopic expression of ZmSIMK1 leads to improved drought tolerance and activation of systematic acquired resistance in transgenic tobacco. J Biotechnol 172:18–29

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X (2016a) The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun T, Li T, Wang M, Yang G, He G (2016b) A CBL-interacting protein kinase TaCIPK2 confers drought tolerance in transgenic tobacco plants through regulating the stomatal movement. PLoS ONE 11:e0167962

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JJ, Lu XK, Yin ZJ, Mu M, Zhao XJ, Wang DL, Wang S, Fan WL, Guo LX, Ye WW (2016c). Genomewide identification and expression analysis of CIPK genes in diploid cottons. Genet Mol Res 15:(4): gmr15048852 https://doi.org/10.4238/gmr15048852

    Article  Google Scholar 

  • Wang Y, Zou Y-N, Shu B, Wu Q-S (2023) Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Sci Hortic 308:111591

    Article  CAS  Google Scholar 

  • Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q, Jin Z, Li Y, Zhou S (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:1–13

    Article  Google Scholar 

  • Wei T, Deng K, Liu D, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W (2016) Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell Physiol 57:1593–1609

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Lu L, Bian XH, Li QT, Han JQ, Tao JJ, Yin CC, Lai YC, Li W, Bi YD (2023) Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. J Integr Plant Biol. https://doi.org/10.1111/jipb.13474

    Article  PubMed  Google Scholar 

  • Wingler A, Quick W, Bungard R, Bailey K, Lea P, Leegood R (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373

    Article  CAS  Google Scholar 

  • Wu YN, Luo Q, Wu Z, Yu J, Zhang Q, Shi F, Zou Y, Li L, Zhao H, Wang Y, Chen M, Chang J, He G, Yang G, Li Yin (2023) A straight-forward gene mining strategy to identify TaCIPK19 as a new regulator of drought tolerance in wheat. Plant Physiol Biochem 203:108034. https://doi.org/10.1016/j.plaphy.2023.108034

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Sun Y, Yang S, Yang Y, Wang D, Wang Z, Zhou W (2023) Systematic identification and functional analysis of the Hypericum perforatum L. bZIP gene family indicating that overexpressed HpbZIP69 enhances drought resistance. Int J Mol Sci 24:14238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong D, Nadal M (2020) Linking water relations and hydraulics with photosynthesis. Plant J 101:800–815

    Article  CAS  PubMed  Google Scholar 

  • Xu C, He C, Wang Y, Bi Y, Jiang H (2020) Effect of drought and heat stresses on photosynthesis, pigments, and xanthophyll cycle in alfalfa (Medicago sativa L.). Photosynthetica 58

  • Yahaya MA, Shimelis HJ (2022) Drought stress in sorghum: Mitigation strategies, breeding methods and technologies—a review. J Agron Crop Sci 208:127–142

    Article  Google Scholar 

  • Yang G, Yu L, Zhang K, Zhao Y, Guo Y, Gao C (2017) A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiol Biochem 113:187–197

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yu T-F, Ma J, Chen J, Zhou Y-B, Chen M, Ma Y-Z, Wei W-L, Xu Z-S (2020) The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int J Mol Sci 21:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Xia L, Zeng Y, Han Q, Zhang S (2022) Grafting enhances plants drought resistance: current understanding, mechanisms, and future perspectives. Front Plant Sci 13:1015317

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhang N, Wang K, Zheng Z, Wei J, Si H (2023) CBL-Interacting Protein Kinases 18 (CIPK18) gene positively regulates drought resistance in potato. Int J Mol Sci 24:3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Chen Y, Wang R, He Y, Ma X, Shen J, He Z, Lai H (2024) Effects of exogenous abscisic acid on the physiological and biochemical responses of Camellia oleifera seedlings under drought stress. Plants 13:225

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Jiang Y, Lu X, Wang B, Zhou P, Wu T (2016) A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Mol Biol Rep 43:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Sun L, Dekomah S, Bi Z, Sun C, Mao J, Zhang C, Qin T, Wang Y, Liu Y (2023) Evolutionary analysis of StSnRK2 family genes and their overexpression in transgenic tobacco improve drought tolerance. Int J Mol Sci 24:1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Bi C, Wang Q, Ni Z (2019) Overexpression of TaSIM provides increased drought stress tolerance in transgenic Arabidopsis. Biochem Biophys Res Commun 512:66–71

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Song T, Wang Y, Zhang M, Li N, Yu M, Zhang S, Zhou H, Guo S, Bu Y (2023) The wheat WRKY transcription factor TaWRKY1-2D confers drought resistance in transgenic Arabidopsis and wheat (Triticum aestivum L.). Int J Biol Macromol 226:1203–1217

    Article  CAS  PubMed  Google Scholar 

  • Zahra N, Farooq M, Siddique KH (2021a) Strategies for improving water use efficiency in dryland agroecosystems. Front Agric Sci Eng 8:599–602

    Article  Google Scholar 

  • Zahra N, Wahid A, Hafeez MB, Ullah A, Siddique KHM, Farooq M (2021b) Grain development in wheat under combined heat and drought stress: plant responses and management. Environ Exp Bot 188:104517. https://doi.org/10.1016/j.envexpbot.2021.104517

    Article  Google Scholar 

  • Zahra N, Hafeez MB, Kausar A, Al Zeidi M, Asekova S, Siddique KH, Farooq M (2023) Plant photosynthetic responses under drought stress: effects and management. J Agron Crop Sci 209(5):651–672

    Article  CAS  Google Scholar 

  • Zarebanadkouki M, Fink T, Benard P, Banfield CC (2019) Mucilage facilitates nutrient diffusion in the drying rhizosphere. Vadose Zone J 18:1–13

    Article  Google Scholar 

  • Zhang H, Mao X, Jing R, Chang X, Xie H (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2. 7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhou M, Walsh J, Zhu L, Chen Y, Ming R (2013) Sugarcane genetics and genomics. Sugarcane 6:623–643

  • Zhang F, Zhu K, Wang Y, Zhang Z, Lu F, Yu H, Zou J (2019a) Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica 57

  • Zhang Y, Deng G, Fan W, Yuan L, Wang H, Zhang P (2019b) NHX1 and eIF4A1-stacked transgenic sweetpotato shows enhanced tolerance to drought stress. Plant Cell Rep 38:1427–1438

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Y, Hassan MJ, Li Z, Peng Y (2020a) Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biol 20:1–12

    Google Scholar 

  • Zhang Y, Wan S, Liu X, He J, Cheng L, Duan M, Liu H, Wang W, Yu YJ (2020b) Overexpression of CsSnRK2. 5 increases tolerance to drought stress in transgenic Arabidopsis. Plant Physiol Biochem 150:162–170

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Li J, Li M, Cheng Z, Song X, Shang X, Guo W (2022) Overexpression of a cotton nonspecific lipid transfer protein gene, GhLTP4, enhances drought tolerance by remodeling lipid profiles, regulating abscisic acid homeostasis and improving tricarboxylic acid cycle in cotton. Environ Exp Bot 201:104991

    Article  CAS  Google Scholar 

  • Zhang L, Zheng Y, Xiong X, Li H, Zhang X, Song Y, Zhang X, Min D (2023) The wheat VQ motif-containing protein TaVQ4-D positively regulates drought tolerance in transgenic plants. J Exp Bot 74:5591–5605

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Qin J, Gao T, Zhang M, Sun H, Zhu S, Xu C, Ning TJ (2022) Immediate and long-term effects of tillage practices with crop residue on soil water and organic carbon storage changes under a wheat-maize cropping system. Soil Tillage Res 218:105309

    Article  Google Scholar 

  • Zheng W, Wang LP, Kuang X, Jin Y, Shen C (2022) Opposing surfactant and gel effects of soil borne-hydrogels on soil water retention. Water Resour Res 58:e2022WR032845

    Article  Google Scholar 

  • Zhu Y, Yan J, Liu W, Liu L, Sheng Y, Sun Y, Li Y, Scheller HV, Jiang M, Hou X (2016) Phosphorylation of a NAC transcription factor by a calcium/calmodulin-dependent protein kinase regulates abscisic acid-induced antioxidant defense in maize. Plant Physiol 171:1651–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Jin X, Zhang Y, Ren C, Zhang M, Wang M (2019) Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica 57

Download references

Acknowledgements

Financial support received from Sultan Qaboos University through His Majesty Trust Fund (SR/AGR/CROP/19/01) is acknowledged.

Author Contributions

MF conceived the idea and prepared the outline and the first draft. NZ, AW, NZ, MBH and KHMS contributed to the draft and improved the article. All authors approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooq.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Pramod Kumar Nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, M., Wahid, A., Zahra, N. et al. Recent Advances in Plant Drought Tolerance. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11351-6

Keywords

Navigation