Skip to main content
Log in

Identification of the Galactinol Synthase (GolS) Family in Medicago truncatula and Expression Analysis Under Abiotic Stress and Phytohormone Treatment

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Galactinol synthase (GolS) serves as a pivotal enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs) and assumes a crucial role in mediating plant responses to environmental stresses. However, a comprehensive exploration of the GolS gene family in the M. truncatula remains lacking. In this study, we identified five GolS genes (MtGolS) from the M. truncatula genome, and an analysis of evolution, domain, tissue expression, as well as their responses to various abiotic stresses and plant hormones was performed on these five genes. Comparative analysis revealed that the gene structure and domains of MtGolSs corresponded with those observed in GolS proteins in rice and Arabidopsis. Notably, the theoretical isoelectric point (pI) of MtGolS3 (8.31) was significantly surpassed that of its counterparts. And a segmental duplication event was found between MtGolS1 and MtGolS5. Furthermore, the expression patterns exhibited distinctive patterns for MtGolS3, characterized by predominant expression in flowers and shoot apical meristems, whereas MtGolS1, 2, 4, and 5 displayed heightened expression levels in seeds. Examination of promoters and expression profiles disclosed the responsiveness of the MtGolS genes to diverse abiotic stresses and phytohormone treatments. Specifically, MtGolS1, 2, 4, and 5 were significantly induced under drought, cold, and salt stress conditions. Additionally, MtGolS1, 3, 4, and 5 were upregulated by auxin (IAA) and gibberellin (GA), but inhibited by abscisic acid (ABA). Additionally, miRNA prediction analysis identified a total of 23 miRNA target sites within the five MtGolS genes, targeted by 17 distinct miRNAs. These findings furnish fundamental insights for further delving into the functional mechanisms of GolS genes in M. truncatula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agnihotri A, Gupta P, Dwivedi A, Seth CS (2018) Counteractive mechanism (s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna Planta 248:49–68

    Article  CAS  PubMed  Google Scholar 

  • Begum Y (2022) Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 821:146238

    Article  Google Scholar 

  • Cui LH, Byun MY, Oh HG, Kim SJ, Lee J, Park H, Lee H, Kim WT (2020) Poaceae type II galactinol synthase 2 from antarctic flowering plant deschampsia antarctica and rice improves cold and drought tolerance by accumulation of raffinose family oligosaccharides in transgenic rice plants. Plant Cell Physiol 61:88–104

    Article  CAS  PubMed  Google Scholar 

  • de Gois EHB, Menegazzo RF, dos Santos TB, de Souza SGH (2020) Identification, evolutionary and expression analysis of the galactinol synthase (GolS) genes in Panicum virgatum L and Panicum hallii: an in silico approach. Plant Gene 244:100262

    Article  Google Scholar 

  • de Souza VD, Willems L, van Arkel J, Dekkers BJW, Hilhorst HWM, Bentsink L (2016) Galactinol as marker for seed longevity. Plant Sci 246:112–118

    Article  Google Scholar 

  • dos Santos TB, Budzinski IG, Marur CJ, Petkowicz CL, Pereira LF, Vieira LG (2011) Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol Biochem 49:441–448

    Article  PubMed  Google Scholar 

  • dos Santos TB, Vieira LGE (2020a) Involvement of the galactinol synthase gene in abiotic and biotic stress responses: a review on current knowledge. Plant Gene 24:100258

    Article  Google Scholar 

  • Elango D, Rajendran K, Van der Laan L, Sebastiar S, Raigne J, Thaiparambil NA, El Haddad N, Raja B, Wang W, Ferela A et al (2022) Raffinose family oligosaccharides: friend or foe for human and plant health? Front Plant Sci 13:829118

    Article  PubMed  PubMed Central  Google Scholar 

  • ElSayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol (stuttg) 16:1–8

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Yu M, Liu M, Zhang R, Sun W, Qian M, Duan H, Chang W, Ma J, Qu C (2017) Genome-wide identification, evolutionary and expression analyses of the GALACTINOL SYNTHASE gene family in rapeseed and tobacco. Int J Mol Sci 18:2768

    Article  PubMed  PubMed Central  Google Scholar 

  • Filiz E, Ozyigit II, Vatansever R (2015) Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon. Comput Biol Chem 58:149–157

    Article  CAS  PubMed  Google Scholar 

  • Gojło E, Pupel P, Lahuta LB, Podliński P, Kucewicz M, Górecki RJ (2015) The acquisition of desiccation tolerance in developing Vicia hirsuta seeds coincides with an increase in galactinol synthase expression and soluble α-D-galactosides accumulation. J Plant Physiol 184:37–48

    Article  PubMed  Google Scholar 

  • Gomez Selvaraj M, Ishizaki T, Valencia M, Ogawa S, Dedicova B, Ogata T, Yoshiwara K, Maruyama K, Kusano M, Saito K et al (2017) Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnol J 15:1465–1477

    Article  Google Scholar 

  • Gupta P, Seth CS (2020) Interactive role of exogenous 24 Epibrassinolide and endogenous NO in Brassica juncea L. under salinity stress: evidence for NR-dependent NO biosynthesis. Nitric Oxide 97:33–47

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Seth CS (2022) 24-epibrassinolide regulates functional components of nitric oxide signalling and antioxidant defense pathways to alleviate salinity stress in Brassica juncea L. cv. Varuna. Journal of Plant Growth Regulation 1–16.

  • Himuro Y, Ishiyama K, Mori F, Gondo T, Takahashi F, Shinozaki K, Kobayashi M, Akashi R (2014) Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon. J Plant Physiol 171:1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Hincha D, Zuther E, Hundertmark M, Heyer AG (2006) The role of compatible solutes in plant freezing tolerance: a case study on raffinose. In Cold hardiness in plants: molecular genetics, cell biology and physiology. Seventh International Plant Cold Hardiness Seminar, Sapporo, Japan, 10–15 July 2004 (pp. 203–218). Wallingford UK: Cabi Publishing.

  • Jing Y, Lang S, Wang D, Xue H, Wang XF (2018) Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds. J Plant Physiol 230:109–121

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yuan S, He Y, Fan J, Zhou Y, Qiu T, Lin X, Yao Y, Liu J, Fu S et al (2018) Genome-wide identification and expression profiling analysis of the galactinol synthase gene family in cassava (Manihot esculenta Crantz). Agronomy-Basel 8:250

    Article  CAS  Google Scholar 

  • Liu L, Wu X, Sun W, Yu X, Qiang Z (2021) Galactinol synthase confers salt-stress tolerance by regulating the synthesis of galactinol and raffinose family oligosaccharides in poplar. Ind Crop Prod 165:113432

    Article  CAS  Google Scholar 

  • Liu Y, Zhang L, Meng S, Liu Y, Zhao X, Pang C, Zhang H, Xu T, He Y, Qi M, Li T (2020) Expression of galactinol synthase from Ammopiptanthus nanus in tomato improves tolerance to cold stress. J Exp Bot 71:435–449

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Lv J, Li X, Ji T, Gao L (2021) Galactinol synthase gene 4 (CsGolS4) increases cold and drought tolerance in Cucumis sativus L by inducing RFO accumulation and ROS scavenging. Environ Exp Bot 185:104406

    Article  CAS  Google Scholar 

  • Martins CPS, Fernandes D, Guimaraes VM, Du D, Silva DC, Almeida A-AF, Gmitter FG Jr, Otoni WC, Costa MGC (2022) Comprehensive analysis of the GALACTINOL SYNTHASE (GolS) gene family in citrus and the function of CsGolS6 in stress tolerance. PLoS ONE 17:e0274791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Sengupta S, Mukherjee A, Basak P, Majumder AL (2019) Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. Planta 249:891–912

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu S, Zhang J, He J, Sha W, Li M, Zhao Y, Zhai Y (2020) Overexpression of GmGolS2-1, a soybean galactinol synthase gene, enhances transgenic tobacco drought tolerance. Plant Cell Tiss Org 143:507–516

    Article  CAS  Google Scholar 

  • Ranjan A, Gautam S, Michael R, Shukla T, Trivedi PK (2023) Arsenic-induced galactinol synthase1 gene, AtGolS1, provides arsenic stress tolerance in Arabidopsis thaliana. Environ Exp Bot 207:105217

    Article  CAS  Google Scholar 

  • Raza A, Charagh S, Najafi-Kakavand S, Abbas S, Shoaib Y, Anwar S, Sharifi S, Lu G, Siddique KH (2023a) Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress 100152.

  • Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KHM, Zhuang W, Varshney RK (2023b) Developing drought-smart, ready-to-grow future crops. Plant Genome 16:e20279

    Article  PubMed  Google Scholar 

  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK (2022) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 15:1–28

    Google Scholar 

  • Salvi P, Kamble NU, Majee M (2020) Ectopic over-expression of ABA-responsive chickpea galactinol synthase (CaGolS) gene results in improved tolerance to dehydration stress by modulating ROS scavenging. Environ Exp Bot 171:103957

    Article  CAS  Google Scholar 

  • Salvi P, Kamble NU, Majee M (2018) Stress-inducible galactinol synthase of chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiol 59:155–166

    Article  CAS  PubMed  Google Scholar 

  • Salvi P, Saxena SC, Petla BP, Kamble NU, Kaur H, Verma P, Rao V, Ghosh S, Majee M (2016) Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation. Sci Rep 6:35088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravitz DM, Pharr DM, Carter TE (1987) Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiol 83:185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj MG, Ishizaki T, Valencia M, Ogawa S, Dedicova B, Ogata T, Yoshiwara K, Maruyama K, Kusano M, Saito K, Takahashi F, Shinozaki K, Nakashima K, Ishitani M (2017) Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnol J 15:1465–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Mukherjee S, Basak P, Majumder AL (2015) Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci 6:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikakura Y, Oguchi T, Yu X, Ohtani M, Demura T, Kikuchi A, Watanabe KN (2022) Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field. Transgenic Res 31:579–591

    Article  CAS  PubMed  Google Scholar 

  • Song J, Mo X, Yang H, Yue L, Song J, Mo B (2017) The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS ONE 12:e0182402

    Article  PubMed  PubMed Central  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Vidigal DdS, Willems L, van Arkel J, Dekkers BJW, Hilhorst HWM, Bentsink L (2016) Galactinol as marker for seed longevity. Plant Sci 246:112–118

    Article  CAS  Google Scholar 

  • Waadt R, Seller CA, Hsu P-K, Takahashi Y, Munemasa S, Schroeder JI (2022) Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Bio 23:680–694

    Article  CAS  Google Scholar 

  • Wang D, Yao W, Song Y, Liu W, Wang Z (2012) Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza. J Plant Physiol 169:1838–1848

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu H, Wang S, Li H, Xin Q (2016) Overexpression of a common wheat gene GALACTINOL SYNTHASE3 enhances tolerance to zinc in Arabidopsis and rice through the modulation of reactive oxygen species production. Plant Mol Biol Rep 34:794–806

    Article  CAS  Google Scholar 

  • Yang J, Ling C, Liu Y, Zhang H, Hussain Q, Lyu S, Wang S, Liu Y (2022) Genome-wide expression profiling analysis of kiwifruit GolS and RFS genes and identification of AcRFS4 function in raffinose accumulation. Int J Mol Sci 23:8836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Wang Y, Zhang Y, Dossa K, Li D, Zhou R, Wang L, Zhang X (2018) Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Sci Rep 8:4331

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang FY, Yang JW, Zhang N, Wu JH, Si HJ (2022a) Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front Plant Sci 13:919243

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Sun Z, Feng S, Zhang J, Zhang F, Wang W, Hu H, Zhang W, Bao M (2022b) The C2H2-type zinc finger protein PhZFP1 regulates cold stress tolerance by modulating galactinol synthesis in Petunia hybrida. J Exp Bot 73:6434–6448

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sun Q, Zhang C, Hao G, Wang C, Dirk LMA, Downie AB, Zhao T (2019) Maize VIVIPAROUS1 interacts with ABA INSENSITIVE5 to regulate GALACTINOL SYNTHASE2 expression controlling seed raffinose accumulation. J Agric Food Chem 67:4214–4223

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Liu Y, Wang S, Shi C, Zhang R, Rao J, Wang X, Gu X, Wang Y, Li D et al (2017) Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors. J Agric Food Chem 65:2751–2759

    Article  CAS  PubMed  Google Scholar 

  • Zhuo C, Wang T, Lu S, Zhao Y, Li X, Guo Z (2013) A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant 149:67–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed by the National Natural Science Foundation of China (32060069 and 32260068), and Natural Science Foundation of Jiangxi Province (20212ACB215004).

Author information

Authors and Affiliations

Authors

Contributions

Hua Li, Ying Di Gao and Li Qing Kang carried out data collection and bioinformatics analysis. Ying Di Gao and Li Ming Zeng performed the biological experiment. Hong Yang Yu and Yi Hua Wang prepared the plant sample. Hua Li, Rong Rong Chen and Jian Bo Song designed the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rong Rong Chen or Jian Bo Song.

Additional information

Handling Author: M.Iqbal R. Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Di Gao, Y., Kang, L.Q. et al. Identification of the Galactinol Synthase (GolS) Family in Medicago truncatula and Expression Analysis Under Abiotic Stress and Phytohormone Treatment. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11283-1

Keywords

Navigation