Skip to main content
Log in

Inoculation of Methylotrophic Bacteria Ameliorate Summer Heat Stress and Enhance the Black Gram (Vigna mungo L.) Growth, Physiology and Antioxidants Properties

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Heat stress has a substantial impact on black gram (Vigna mungo L.) by reducing growth, grain yield, and quality. Black gram is highly sensitive to temperature; it requires a range of 27–35 °C for flowering and pod formation. Therefore, to mitigate heat stress during the summer season in black gram, phyllosphere-associated methylotrophic bacteria (Methylobacterium brachiatum (KD1 and SD3), M. thiocyanatum (SD2), and Methylorubrum populi (KD5) were chosen from the previously identified strains. Screening for plant growth-promoting properties revealed that all strains (KD1, KD5, SD2, and SD3) were able to grow on nitrogen-free (N2) medium, produced siderophore (12.57 to 69.10%), indole-acetic acid (IAA) like substances (91.93 to 94.14 µg/mL), and 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) (0. 34 to 1.33 nmol α-ketobutyrate/mg protein/h). A pot study experiment during the summer season (average temperature 42 °C) revealed that black gram seeds treated with methylotrophic bacteria had a higher biomass. Moreover, the chlorophyll content was significantly enhanced, ranging from least 188.00% to maximum 264.94%, and carotenoid pigments ranging from least 104.82% to maximum 155.10% compared to the control plants group. Similarly, the inoculation with methylotrophs also enhanced antioxidant enzymes such as POD in leaves (with least 7.14 and maximum 66.66%) and stems (with least 2.94 and maximum 191.17%), SOD (with least 92.30 and maximum 607.69%) and (with least 30.76 and maximum 150.00%), and PAL (with least 1.33 and maximum 89.33%) and (with least 25.58 and maximum 60.46%) compared to the control plants. In addition, Methylobacterium strains reduced oxidative stress in plants by managing the production of hydrogen peroxide (H2O2) and superoxide radicals (O2.−). These results showed that methylotrophs have a strong ability to protect black gram plants, and enhance their biomass under heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdelaal K, AlKahtani M, Attia K, Hafez Y, Király L, Künstler A (2021) The role of plant growth-promoting bacteria alleviating the adverse effects of drought on plants. Biology 10:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agathokleous E, Kitao M, Komatsu M, Tamai Y, Harayama H, Koike T (2023) Single and combined effects of fertilization, ectomycorrhizal inoculation, and drought on container-grown Japanese larch seedlings. J For Res 34:1077–1094

    Article  CAS  Google Scholar 

  • Ali T, Bylund D, Essén SA, Lundström US (2011) Liquid extraction of low molecular mass organic acids and hydroxamate siderophores from boreal forest soil. Soil Biol Biochem 43:2417–2422

    Article  CAS  Google Scholar 

  • Ali AH, Abdelrahman M, Radwan U, El-Zayat S, El-Sayed MA (2018) Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Appl Soil Ecol 124:155–162

    Article  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xiao M, Li WJ (2017) Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol 74:116–127

    Article  PubMed  ADS  Google Scholar 

  • Anitha P, Kumutha K, Raja MC, Kamaraj K, Senthilkumar M (2021) Comparative analysis of two Methylobacterium spp. for mitigating moisture stress induced by PEG in early growth stages of tomato. Int J Curr Microbiol Appl Sci 10:66–83

    Article  CAS  Google Scholar 

  • Ashok G, Nambirajan G, Baskaran K, Viswanathan C, Alexander X (2020) Phylogenetic diversity of epiphytic pink-pigmented methylotrophic bacteria and role in alleviation of abiotic stress in plants. In: Yadav A, Singh J, Rastegari A, Yadav N (eds) Plant microbiomes for sustainable agriculture. Sustainable development and biodiversity, vol 25. Springer, Cham, pp 245–262

    Chapter  Google Scholar 

  • Bajpai A, Mahawar H, Dubey G, Atoliya N, Parmar R, Devi MH, Kollah B, Mohanty SR (2022) Prospect of pink pigmented facultative methylotrophs in mitigating abiotic stress and climate change. J Basic Microbiol 62:889–899

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Mitsui T, Sueyoshi K, Ohyama T (2020) Recent advances in carbon and nitrogen metabolism in C3 plants. Int J Mol Sci 22:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu PS, Singh U, Kumar A, Praharaj CS, Shivran RK (2016) Climate change and its mitigation strategies in pulses production. Indian J Agron 61:S71–S82

    Google Scholar 

  • Bates LS, Waldren RA, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bournonville CF, Díaz-Ricci JC (2011) Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochem Anal 22:268–271

    Article  PubMed  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Brueske CH (1980) Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the root-knot nematode, Meloidogyne incognita. Physiol Plant Pathol 16:409–414

    Article  CAS  Google Scholar 

  • Bruno LB, Karthik C, Ma Y, Kadirvelu K, Freitas H, Rajkumar M (2020) Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521

    Article  CAS  PubMed  Google Scholar 

  • Chandwani S, Amaresan N (2022) Role of ACC deaminase producing bacteria for abiotic stress management and sustainable agriculture production. Environ Sci Pollut Res 29:22843–22859

    Article  CAS  Google Scholar 

  • Chanratana M, Han GH, Roy CA, Sundaram S, Halim MA, Krishnamoorthy R, Kang Y, Sa T (2017) Assessment of Methylobacterium oryzae CBMB20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development. AMB Express 7:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanratana M, Joe MM, Roy CA, Anandham R, Krishnamoorthy R, Kim K, Jeon S, Choi J, Choi J, Sa T (2019) Physiological response of tomato plant to chitosan-immobilized aggregated Methylobacterium oryzae CBMB20 inoculation under salinity stress. 3 Biotech 9:1–13

    Article  Google Scholar 

  • Chinnadurai C, Balachandar D, Sundaram SP (2009) Characterization of 1-aminocyclopropane-1-carboxylate deaminase producing methylobacteria from phyllosphere of rice and their role in ethylene regulation. World J Microbiol Biotechnol 25:1403–1411

    Article  CAS  Google Scholar 

  • Choi J, Roy CA, Park SY, Oh MM, Sa T (2021) Inoculation of ACC deaminase-producing Brevibacterium linens RS16 enhances tolerance against combined UV-B radiation and heat stresses in rice (Oryza sativa L.). Sustainability 13:10013

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dash S, Mohanty N (2002) Response of seedlings to heat-stress in cultivars of wheat: growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. J Plant Physiol 159:49–59

    Article  CAS  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von MC, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Dubey A, Kumar K, Srinivasan T, Kondreddy A, Kumar KRR (2022) An invasive weed-associated bacteria confers enhanced heat stress tolerance in wheat. Heliyon 8:e09893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132:297–307

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Rehman A, Wahid A, Siddique KH (2018) Photosynthesis under heat stress. In: Pessarakli M (ed) Handbook of photosynthesis. CRC Press, Boca Raton, pp 697–701

    Chapter  Google Scholar 

  • Fortunato S, Lasorella C, Dipierro N, Vita F, de Pinto MC (2023) Redox signaling in plant heat stress response. Antioxidants 12:605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamit HA, Amaresan N (2023) Role of methylotrophic bacteria in managing abiotic stress for enhancing agricultural production: a review. Pedosphere 33:49–60

    Article  CAS  Google Scholar 

  • Gamit HA, Naik H, Chandarana KA, Chandwani S, Amaresan N (2023) Secondary metabolites from methylotrophic bacteria: their role in improving plant growth under a stressed environment. Environ Sci Pollut Res 30:28563–28574

    Article  CAS  Google Scholar 

  • Garg G, Kumar S, Bhati S (2021) Siderophore in plant nutritional management: role of endophytic bacteria. In: Maheshwari DK, Dheeman S (eds) Endophytes: mineral nutrient management, volume 3. Sustainable development and biodiversity, vol 26. Springer, Cham, pp 315–329

    Chapter  Google Scholar 

  • Ghorbanpour M, Hatami M, Kariman K, Abbaszadeh DP (2016) Phytochemical variations and enhanced efficiency of antioxidant and antimicrobial ingredients in Salvia officinalis as inoculated with different rhizobacteria. Chem Biodivers 13:319–330

    Article  CAS  PubMed  Google Scholar 

  • Goyal RK, Schmidt MA, Hynes MF (2021) Molecular biology in the improvement of biological nitrogen fixation by rhizobia and extending the scope to cereals. Microorganisms 9:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA, Van SJ (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, daSilva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic Stress-Plant Responses Appl Agric 13:169–205

    Google Scholar 

  • Hichem H, Mounir D, Naceur E (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Industrial Crops Prod 30:144–151

    Article  CAS  Google Scholar 

  • Hussain HA, Men S, Hussain S, Chen Y, Ali S, Zhang S, Zhang K, Li Y, Xu Q, Liao C (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9:1–12

    Article  Google Scholar 

  • Jensen HL (1942) Nitrogen fixation in leguminous plants, I. General characters of root nodule bacteria isolated from species Medicago and Triflolium. Proc Linn Soc NSW 67:98–108

    CAS  Google Scholar 

  • Jiang JL, Tian Y, Li L, Yu M, Hou RP, Ren XM (2019) H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front Plant Sci 10:678

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Khan AL, Waqas M, Asaf S, Lee KE, Park YG, Kim AY, Khan MA, You YH, Lee IJ (2019) Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interact 14:416–423

    Article  CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreslavski VD, Lyubimov VY, Shabnova NI, Balakhnina TI, Kosobryukhov AA (2009) Heat-induced impairments and recovery of photosynthetic machinery in wheat seedlings. Role of light and prooxidant-antioxidant balance. Physiol Mol Biol Plants 15:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy R, Kwon SW, Kumutha K, Senthilkumar M, Ahmed S, Sa T, Anandham R (2018) Diversity of culturable methylotrophic bacteria in different genotypes of groundnut and their potential for plant growth promotion. 3 Biotech 8:1–11

    Article  Google Scholar 

  • Krishnamoorthy R, Anandham R, Senthilkumar M, Venkatramanan V (2021) Adaptation mechanism of methylotrophic bacteria to drought condition and its strategies in mitigating plant stress caused by climate change. In: Venkatramanan V, Shah S, Prasad R (eds) Exploring synergies and trade-offs between climate change and the sustainable development goals. Springer, Singapore, pp 145–158

    Chapter  Google Scholar 

  • Kumar AS, Sridar R, Uthandi S (2017) Mitigation of drought in rice by a phyllosphere bacterium Bacillus altitudinis FD48. Afr J Microbiol Res 11:1614–1625

    Article  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308

    Article  CAS  Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. Curr Protoc Food Anal Chem. https://doi.org/10.1002/0471142913.faf0403s01

    Article  Google Scholar 

  • Lippmann R, Babben S, Menger A, Delker C, Quint M (2019) Development of wild and cultivated plants under global warming conditions. Curr Biol 29:R1326–R1338

    Article  CAS  PubMed  Google Scholar 

  • Llauradó MG, Méndez RD, Hendrix S, Escalona AJC, Fung BY, Pacheco AO, García DJ, Morris-Quevedo HJ, Ferrer DA, Aleman EI, Beenaerts N (2020) Antioxidants in plants: a valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants 9:1048

    Article  Google Scholar 

  • Masood S, Zhao XQ, Shen RF (2020) Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Sci Hortic 272:109581

    Article  CAS  Google Scholar 

  • Meena KK, Bitla UM, Sorty AM, Singh DP, Gupta VK, Wakchaure GC, Kumar S (2020) Mitigation of salinity stress in wheat seedlings due to the application of phytohormone-rich culture filtrate extract of methylotrophic actinobacterium Nocardioides sp. NIMMe6. Front Microbiol 11:2091

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirza H, Nahar K, Alam Md, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–84

    Article  Google Scholar 

  • Mukhtar T, Rehman SU, Smith D, Sultan T, Seleiman MF, Alsadon AA, Ali S, Chaudhary HJ, Solieman TH, Ibrahim AA, Saad MA (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12:2159

    Article  CAS  Google Scholar 

  • Muneer S, Ahmad J, Bashir H, Qureshi M (2012) Proteomics of nitrogen fixing nodules under various environmental stresses. Plant Omics 5:167–176

    CAS  Google Scholar 

  • Munir N, Hanif M, Abideen Z, Sohail M, El-Keblawy A, Radicetti E, Mancinelli R, Haider G (2022) Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 12:2069

    Article  CAS  Google Scholar 

  • Neshat M, Abbasi A, Hosseinzadeh A, Sarikhani MR, Dadashi CD, Rasoulnia A (2022) Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. Physiol Mol Biol Plants 28:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilanthi D, Ranawake AL, Senadhipathy DD (2014) Effects of water stress on the growth and reproduction of black gram (Vigna mungo L.). Trop Agric Res Ext 17:45–48

    Google Scholar 

  • Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi KK, Mohanty A, Pradhan J, Das TR, Baisakh B (2015) Estimation of combining ability in black gram (Vigna mungo (L.) Hepper) for yield and its attributing traits using the diallel crossing method. Electron J Plant Breed 6:651–657

    Google Scholar 

  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE 12:0173203

    Google Scholar 

  • Pattnaik S, Rajkumari J, Paramanandham P, Busi S (2017) Indole acetic acid production and growth-promoting activity of Methylobacterium extorquens MP1 and Methylobacterium zatmanii MS4 in tomato. Int J Veg Sci 23:321–330

    Article  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Pokora W, Reszka J, Tukaj Z (2003) Activities of superoxide dismutase (SOD) isoforms during growth of Scenedesmus (Chlorophyta) species and strains grown in batch-cultures. Acta Physiol Plant 25:375–384

    Article  CAS  Google Scholar 

  • Radecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, Roth F, Bougoure J, Guagliardo P, Struck U, Wild C (2022) Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J 16:1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Coaker GL, Leveau JH (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Burgess P, Jespersen D, Huang B (2017) Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differing in heat tolerance. Crop Sci 57:S-169

    Article  Google Scholar 

  • Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase, and global climate change. J Exp Bot 59:1581–1595

    Article  CAS  PubMed  Google Scholar 

  • Saha BN, Roy S, Rakshit R (2022) Managing abiotic stressed agriculture through microbes. In: Mandal N, Dey A, Rakshit R (eds) Soil management for sustainable agriculture. Apple Academic Press, New York, pp 123–141

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri SA, Al-Khaishany MY, Al-Qutami MA, Ali HM, Khan MN (2017) Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage. J Plant Interact 12:177–186

    Article  CAS  Google Scholar 

  • Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K (2020) Phyllospheric microbiomes: diversity, ecological significance, and biotechnological applications. In: Yadav A, Singh J, Rastegari A, Yadav N (eds) Plant microbiomes for sustainable agriculture. Sustainable development and biodiversity, vol 25. Springer, Cham, pp 113–172

    Chapter  Google Scholar 

  • Uzma M, Iqbal A, Hasnain S (2022) Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiata. PLoS ONE 17:e0262932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016) Appraisal of diversity and functional attributes of thermotolerant wheat (Triticum aestivum L.) associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Lu J, Zhang S, Wang P, Hou J, Qian J (2011) Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicol Environ Saf 74:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wu C, Liu J, Chen Q, Li C, Shu C, Zhang Y, Liu Y (2022) Changes in soil microbial communities induced by warming and N deposition accelerate the CO2 emissions of coarse woody debris. J For Res 34:1–13

    CAS  Google Scholar 

  • Yang S, Meng DY, Hou LL, Li Y, Guo F, Meng JJ, Wan SB, Li XG (2015) Peanut violaxanthin de-epoxidase alleviates the sensitivity of PSII photoinhibition to heat and high irradiance stress in transgenic tobacco. Plant Cell Rep 34:1417–1428

    Article  CAS  PubMed  Google Scholar 

  • Yasmin H, Naeem S, Bakhtawar M, Jabeen Z, Nosheen A, Naz R, Keyani R, Mumtaz S, Hassan MN (2020) Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS ONE 15:e0231348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

HAG thanks the Gujarat government for providing the SHODH fellowship (ScHeme of High-Quality Research Fellowship) for pursuing Ph.D.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NA: designed the study and edited final manuscript; HAG: performed the experiments, analyzed data and wrote the initial manuscript.

Corresponding author

Correspondence to Natarajan Amaresan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Handling Editor: Jose M. Miguel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamit, H.A., Amaresan, N. Inoculation of Methylotrophic Bacteria Ameliorate Summer Heat Stress and Enhance the Black Gram (Vigna mungo L.) Growth, Physiology and Antioxidants Properties. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11251-9

Keywords

Navigation