Skip to main content
Log in

Characterization of a Homeodomain-Leucine Zipper Gene 12: Gene Silencing in Pepper and Arabidopsis-Based Overexpression During Abiotic Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Homeodomain-Leucine Zipper (HD-Zip) proteins are important ubiquitous and diverse molecular chaperones in plants. We characterized a gene CaATHB-12 derived from HD-Zip I subfamily which was intensively induced by exogenous abscisic acid (ABA), salt, and mannitol applications in a pepper cultivar. Efficient gene silencing lines were created from pepper, and stable heterologous overexpression lines were created from Arabidopsis to achieve a comprehensive exploration of gene function. The functional study of CaATHB-12 in pepper increased plant sensitivity to ABA stress, while the over-expressing CaATHB-12 in Arabidopsis lines revealed that tolerance to ABA, salt, and mannitol stresses was decreased. Furthermore, CaATHB-12 plays a fundamental role in elevating the tolerance to these stresses through the increased expression of other stress related genes, increasing the activities of antioxidant enzymes and scavenging the reactive oxygen species. The studied functions of the CaATHB-12 gene may provide some insights in exquisite molecular detail by pursuing signal transduction mechanisms that converge on gene expression patterns.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this manuscript and its supplementary information files.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105(13):121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, Vos RCHd, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):0–674

    Article  CAS  Google Scholar 

  • Ali B, Hasan S, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62(2):153–159

    Article  CAS  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12(9):419–426

    Article  CAS  PubMed  Google Scholar 

  • Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell 22(7):2171–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Biol 141(2):311–311

    CAS  Google Scholar 

  • Barickman TC, Kopsell DA, Sams CE (2014) Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J Am Soc Hortic Sci Am Soc Hortic Sci 139(3):261–266

    Article  CAS  Google Scholar 

  • Barrero JM, Millar AA, Griffiths J, Czechowski T, Scheible WR, Udvardi M, Reid JB, Ross JJ, Jacobsen JV, Gubler F (2010) Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J 61(4):611–622

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Benson D, Karsch-Mizrachi I, Lipman D, Ostell J, Rapp B, Wheeler D (2000) GenBank Nucleic Acids Res 28(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Brandt R, Cabedo M, Xie Y, Wenkel S (2014) Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment. J Integr Plant Biol 56(6):518–526

    Article  CAS  PubMed  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59(3):411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52(C):302–310

    Article  CAS  PubMed  Google Scholar 

  • Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Van Montagu M, Inze D (1998) Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in Tobacco BY-2 cell cultures. Plant Sci 138(1):27–34

    Article  CAS  Google Scholar 

  • Chang J, Wang M, Jian Y, Zhang F, Zhu J, Wang Q, Sun B (2019) Health-promoting phytochemicals and antioxidant capacity in different organs from six varieties of Chinese kale. Sci Rep 9(1):20344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194(4):541–549

    Article  CAS  Google Scholar 

  • Coombe BG, Hale C (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol 51(4):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Phillips J, Meijer AH, Salamini F, Bartels D (2002) Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 49(6):601–610

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Phillips J, Bräutigam A, Engström P, Johannesson H, Ouwerkerk PB, Ruberti I, Salinas J, Vera P, Iannacone R (2006) A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses. Plant Mol Biol 61(3):469–489

    Article  CAS  PubMed  Google Scholar 

  • Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49(5):2222–2227

    Article  CAS  PubMed  Google Scholar 

  • Enoki S, Hattori T, Ishiai S, Tanaka S, Mikami M, Arita K, Nagasaka S, Suzuki S (2017) Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues. J Plant Physiol 21(9):22–27

    Article  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105(1):114–121

    Article  PubMed  Google Scholar 

  • Foyer CH (2020) How plant cells sense the outside world through hydrogen peroxide. Nature 578(7796):518–519

    Article  CAS  PubMed  Google Scholar 

  • Frank W, Phillips J, Salamini F, Bartels D (1998) Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J 15(3):413–421

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5(1):1–23

    Google Scholar 

  • Guo W, Chen R, Gong Z, Yin Y, Ahmed S, He Y (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res 11(4):4063–4080

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Yin YX, Ji JJ, Ma BP, Lu MH, Gong ZH (2014) Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper (Capsicum annuum L). Genet Mol Res Gmr 13(1):1865–1875

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH (2016) Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress. Plant Sci 25(2):246–256

    Article  Google Scholar 

  • Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190(4):823–837

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79(4):597–606

    Article  CAS  PubMed  Google Scholar 

  • He YM, Luo DX, Khan A, Liu KK, Arisha MH, Zhang HX, Cheng GX, Ma X, Gong ZH (2018) CanTF, a novel transcription factor in Pepper, is involved in resistance to phytophthora capsici as well as abiotic stresses. Plant Mol Biology Report 36(5):776–789

    Article  Google Scholar 

  • Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139(1):509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21(12):3029–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hjellstrom M, Olsson A, Engström P, Söderman E (2003) Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant Cell Environ 26(7):1127–1136

    Article  Google Scholar 

  • Hunter RS (1987) The measurement of appearance. John Wiley, New York

    Google Scholar 

  • Huo Y, Xiong W, Su K, Li Y, Yang Y, Fu C, Wu Z, Sun Z (2019) Genome-wide analysis of the TCP gene family in Switchgrass (Panicum virgatum L.). Int J Genom. 2019: 8514928

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, AlJuburi HJ, ChangXing Z, HongBo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31(3):427–436

    Article  Google Scholar 

  • Jiang MY, Zhang JH (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53(379):2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Liu C, Yan D, Wen X, Liu Y, Wang H, Dai J, Zhang Y, Liu Y, Zhou B, Ren X (2017) MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’. J Exp Bot 68(5):1055–1069

    Article  CAS  PubMed  Google Scholar 

  • Johannesson H, Wang Y, Hanson J, Engström P (2003) The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol 51(5):719–729

    Article  CAS  PubMed  Google Scholar 

  • Kalt W, McDonald J, Donner H (2000) Anthocyanins, phenolics, and antioxidant capacity of processed lowbush blueberry products. J Food Sci 65(3):390–393

    Article  CAS  Google Scholar 

  • Karpinski S, Muhlenbock P (2007) Genetic, molecular and physiological mechanisms controlling cell death, defenses, and antioxidant network in response to abiotic and biotic stresses in plants. Comp Biochem Physiol a-Molecular Integr Physiol 146(4):S60–S60

    Article  Google Scholar 

  • Khan MIR, Khan N (2017) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Heidelberg

    Google Scholar 

  • Khan A, Li RJ, Sun JT, Ma F, Gong ZH (2018) Genome-wide analysis of dirigent gene family in pepper (Capsicum annuum L.) and characterization of CaDIR7 in biotic and abiotic stresses. Sci Rep 8(1):5500

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Park M, Yeom S-I, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46(3):270–278

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331(11):865–873

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164(12):1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Li D, Li L, Luo Z, Mou W, Mao L, Ying T (2015) Comparative transcriptome analysis reveals the influence of abscisic acid on the metabolism of pigments, ascorbic acid and folic acid during strawberry fruit ripening. PLoS ONE 10(6):e0130037

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim CW, Baek W, Jung J, Kim JH, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16(7):15251–15270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Løvdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71(5–6):605–613

    Article  PubMed  Google Scholar 

  • Lu P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan MA, Wang L, Hong B, Gao J (2014) RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa Hybrida) petal senescence. Plant J 78(4):578–590

    Article  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane SA (1999) Molecular biology of the tobraviruses. J Gen Virol 80(11):2799–2807

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Mohanta YK, Panda S (2013) Methods to study antioxidant properties with special reference to medicinal plants. Int J Pharm North Orissa Univ Baripada-757003 Odisha India 3(1):91–97

    Google Scholar 

  • Manavella PA, Arce AL, Dezar CA, Bitton F, Renou JP, Crespi M, Chan RL (2006) Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J 48(1):125–137

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Dezar CA, Ariel FD, Drincovich MF, Chan RL (2008) The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes. J Exp Bot 59(11):3143–3155

    Article  CAS  PubMed  Google Scholar 

  • Michael A, and, Paul, Wilson (1997) Relationship between hunter color values and β-Carotene contents in white-fleshed African sweetpotatoes (Ipomoea batatas Lam). J Sci Food Agric 73(3):301–306

    Article  Google Scholar 

  • Nafees A, Khan, Naser A, Anjum, Narendra T, Sarvajeet S (2011) Amelioration of cadmium stress in crop plants by nutrient management: morphological, physiological and biochemical aspects. Plant Stress 5(1):1–23

    Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28(1):131–140

    CAS  Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Mol Biol 42(4):657–665

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Nguyen CTT, Jung C, Cheong JJ (2019) AtMYB44 suppresses transcription of the late embryogenesis abundant protein gene AtLEA4-5. Biochem Biophys Res Commun 511(4):931–934

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Shih C, Chow WS, Pogson BJ, DellaPenna D, Björkman O (2001) Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67(12):139–145

    Article  CAS  PubMed  Google Scholar 

  • Olsson AS, Engstrom P, Soderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55(5):663–677

    Article  CAS  PubMed  Google Scholar 

  • Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi YM, Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot 59(11):2933–2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro C, Chaves M (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys acta 975(3):0–394

    CAS  Google Scholar 

  • Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013) Expression of rd29A: AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 6(9):90–100

    Article  Google Scholar 

  • Ré DA, Capella M, Bonaventure G, Chan RL (2014) Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC Plant Biol 14:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes D, Rodríguez D, González-García MP, Lorenzo O, Nicolás G, GarcíaMartínez JL, Nicolás C (2006) Overexpression of a protein phosphatase 2 C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis. Plant Physiol 141(4):1414–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribichich KF, Arce AL, Chan RL (2013) Coping with drought and salinity stresses: role of transcription factors in crop improvement. Climate change and plant abiotic stress tolerance. Wiley, Hoboken, pp 641–684

    Chapter  Google Scholar 

  • Rodov V, Tietel Z, Vinokur Y, Horev B, Eshel D (2010) Ultraviolet light stimulates flavonol accumulation in peeled onions and controls microorganisms on their surface. J Agricultural Food Chem 58(16):9071–9076

    Article  CAS  Google Scholar 

  • Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim TH, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2 C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150(3):1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui H, Cao S, Shang H, Jin P, Wang K, Zheng Y (2010) Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. J Sci Food Agric 90(9):1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Satoru K, Siriwan M, Yusuke B, Takaya (2009) Effects of auxin and jasmonates on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression during ripening of apple fruit. Postharvest Biol Technol 51(2):281–284

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 10(1):1–16

    Article  Google Scholar 

  • Soderman E, Mattsson J, Engstrom P (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10(2):375–381

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory S, Kishor PK (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • Stewart RRC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65(2):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P (2012) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J Exp Bot 63(8):3097–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor I, Linforth R, Al-Naieb R, Bowman W, Marples B (1988) The wilty mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant. Cell Environ 1(1):739–745

    Article  Google Scholar 

  • Tian SL, Li L, Chai W-G, Shah SNM, Gong ZH (2014) Effects of silencing key genes in the capsanthin biosynthetic pathway on fruit color of detached pepper fruits. BMC Plant Biol 14(1):314

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian SL, Li L, Tian YQ, Shah SNM, Gong ZH (2016) Effects of abscisic acid on capsanthin levels in Pepper fruit. J Am Soc Hort Sci 141(6):609–616

    Article  CAS  Google Scholar 

  • ul Ul Haq S, Khan A, Ali M, Gai W-X, Zhang HX, Yu QH, Yang SB, Wei AM, Gong ZH (2019) Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L). Planta 250(6):2127–2145

    Article  Google Scholar 

  • Valdés AE, Övernäs E, Johansson H, Rada-Iglesias A, Engström P (2012) The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80(4–5):405–418

    Article  PubMed  Google Scholar 

  • Verslues PE, Zhu JK (2005) Before and beyond ABA: Upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33(Pt 2):375–379

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Zhao J, Liu S (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L). Biochem Biophys Res Commun 416(1–2):0–30

    CAS  Google Scholar 

  • Wang H, Niu H, Zhai Y, Lu M (2017) Characterization of BiP genes from pepper (Capsicum annuum L.) and the role of CaBiP1 in response to endoplasmic reticulum and multiple abiotic stresses. Front Plant Sci 8(1):122

    Google Scholar 

  • Wang F, Sha J, Chen Q, Xu X, Zhu Z, Ge S, Jiang Y (2020) Exogenous abscisic acid regulates distribution of 13C and 15N and anthocyanin synthesis in ‘Red Fuji’ apple fruit under high nitrogen supply. Front Plant Sci 10:1738

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016) Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Biochem 10(4):17–28

    Article  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5(3):218–223

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Juan (2014) Cloning and functional analysis of leaf senescence-related genes in capsicum annuum L, vol 3. Northwest A&F University, pp 0–107. (in Chinese)

  • Xiao HJ, Yin YX, Chai WG, Gong ZH (2014) Silencing of the CaCP gene delays salt-and osmotic-induced leaf senescence in Capsicum annuum L. Int J Mol Sci 15(5):8316–8334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP (2006) Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol 140(2):558–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Weng Q, Zhou B (2016) Effects of exogenous ABA on contents of lycopene and endogenous hormone in tomato pericarp. Biotechnol J Int 1(6):1–5

    CAS  Google Scholar 

  • Yu W, Zhao R, Wang L, Zhang S, Li R, Sheng J, Shen L (2019) ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants. Planta 250(2):643–655

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Leng P, Zhang G, Li X (2009) Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol 166(12):1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PB (2012) Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol 80(6):571–585

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Xu (2016) Study on the effect of ABA signal in fruit development and maturation process in ‘Zunla-1’. Zhongkai University of Agriculture and Engineering (in Chinese) 65:0-195

  • Zhang RX, Zhu WC, Cheng GX, Yu YN, Li QH, ul Haq S, Said F, Gong H (2020) A novel gene, CaATHB-12, negatively regulates fruit carotenoid content under cold stress in Capsicum annuum. Food & Nutrition Research 64:3729

    Article  CAS  Google Scholar 

  • Zhu Y, Zheng P, Varanasi V, Shin S, Main D, Curry E, Mattheis JP (2012) Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genet Genom 8(6):1389–1406

    Article  Google Scholar 

  • Zweier JL (1988) Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 263(3):1353–1357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported through funding from the National Natural Science Foundation of China (No. 31772309, No. 31860556 and No. U1603102) and China Agriculture Research System of MOF and MARA (CARS-24-G-01).

Author information

Authors and Affiliations

Authors

Contributions

RXZ and ZHG: Conceptualization, Methodology, Investigation, Data curation, Writing—original draft. RXZ, QHL, and GXC: Writing—review and editing. JJX: Conceptualization, Visualization, Investigation, Writing—review and editing. AK and SH: Methodology, Writing—review and editing. HLY and ZHG: Supervision, Visualization, Resources, Writing—review and editing. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Huiling Yan or Zhenhui Gong.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest in this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling Editor: Tariq Aftab.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1086.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Li, Q., Xiao, J. et al. Characterization of a Homeodomain-Leucine Zipper Gene 12: Gene Silencing in Pepper and Arabidopsis-Based Overexpression During Abiotic Stress. J Plant Growth Regul 43, 1689–1706 (2024). https://doi.org/10.1007/s00344-023-11215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11215-5

Keywords

Navigation