Skip to main content

Advertisement

Log in

Synergistic Effects of Selenium and Silicon Mitigate Arsenic Toxicity in Oryza sativa L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Arsenic (As) is a toxic element for plants, animals and humans. The mitigation of As stress has been achieved via selenium (Se) and silica (Si) supplementations. However, the effects of combined application of Se and Si against As stress are not known. The present study was conducted to evaluate the effect of Se (0.5 and 1 mg L−1) and Si (10 and 30 mg L−1) on Oryza sativa L. (rice) subjected to during As (4 mg L−1) stress. The rice plants showed reduction in As accumulation in co-treatment of As + Se, As + Si and As + Se + Si in comparison to As alone treated plants (7 d). The maximum reduction of As accumulation in root and shoot was 57% and 64%, respectively in As + Se + Si treatment. The increase in enzymatic antioxidant system (superoxide dismutase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase and glutathione-s-transferase) along with decrease in oxidative stress markers (lipid peroxidation, dehydroascorbate reductase, ascorbate oxidase and hydrogen peroxide) in As + Se + Si treatment as compared to As treatment signified elevated tolerance of rice plants to As stress. Gene expressions of enzymes involved in antioxidant defence and thiol metabolism were found to be significantly positively correlated with their respective biochemical activities. In conclusion an optimum combination of Se and Si can be used to effectively mitigate As toxicity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afton SE, Catron B, Caruso JA (2009) Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyper accumulating Chlorophytum comosum, spider plant. J Exp Bot 60:1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MZ, Hoque MA, Ahammed GJ, Carpenter-Boggs L (2019) Arbuscular mycorrhizal fungi, selenium, sulfur, silica-gel and biochar reduce arsenic uptake in plant biomass and improve nutritional quality in Pisum sativum. BioRxiv 663120.

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Beauchamp C, Fridovich Y (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bhadwal S, Sharma S (2022) Selenium alleviates physiological traits, nutrient uptake and nitrogen metabolism in rice under arsenate stress. Environ Sci Poll Res 29:70862–70881

    Article  CAS  Google Scholar 

  • Blaszczyk A, Sirko L, Hawkesford MJ, Sirko A (2002) Biochemical analysis of transgenic tobacco lines producing bacterial serine acetyl transferase. Plant Sci 162:589–597

    Article  CAS  Google Scholar 

  • Boorboori MR, Gao Y, Wang H, Fang C (2021) Usage of Si, P, Se, and Ca Decrease arsenic concentration/toxicity in rice, a review. Applied Sci 11(17):8090

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S (2022) Epigenetic modifications from arsenic exposure: a comprehensive review. Sci Total Environ 810:151218

    Article  CAS  PubMed  Google Scholar 

  • Cooper AM, Felix D, Alcantara F, Zaslavsky I, Work A, Watson PL, Pezzoli K, Yu Q, Zhu D, Scavo AJ, Zarabi Y (2020) Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: a case study of an urban community garden. Plant Direct 4(1):e00198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  Google Scholar 

  • Das S, Biswas AK (2022) Comparative study of silicon and selenium to modulate chloroplast pigments levels, Hill activity, photosynthetic parameters and carbohydrate metabolism under arsenic stress in rice seedlings. Environ Sci Poll Res 29(13):19508–19529

    Article  CAS  Google Scholar 

  • Das S, Majumder B, Biswas AK (2022) Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings. Ecotoxicol 31(3):468–489

    Article  CAS  Google Scholar 

  • De Tullio MC, De Gara L, Paciolla C, Arrigoni O (1998) Dehydroascorbate reducing proteins in maize are induced by the ascorbate biosynthesis inhibitor lycorine. Plant Physiol Biochem 36:433–440

    Article  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    Article  CAS  PubMed  Google Scholar 

  • Drotar A, Phelps P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cell. Plant Sci 42:35–40

    Article  CAS  Google Scholar 

  • Dubey AK, Kumar N, Ranjan R, Gautam A, Pande V, Sanyal I, Mallick S (2018) Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes. Ecotoxicol Environ Saf 148:410–417

    Article  Google Scholar 

  • Dwivedi S, Tripathi RD, Tripathi P, Kumar A, Dave R, Mishra S, Singh R, Sharma D, Rai UN, Chakrabarty D, Trivedi PK (2010) Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ Sci Technol 44(24):9542–9549

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Kumar A, Mishra S, Sharma P, Sinam G, Bahadur L, Goyal V, Jain N, Tripathi RD (2020) Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Environ Sci Poll Res 27(19):24025–24038

    Article  CAS  Google Scholar 

  • Esaka M, Imagi J, Suzuki K (1988) Formation of ascorbate oxidase in cultured pumpkin cells. Plant Cell Physiol 29:231–235

    CAS  Google Scholar 

  • Feng R, Wei C, Tu S, Sun X (2009) Interactive effects of selenium and arsenic on their uptake by Pteris vittata L under hydroponic conditions. Environ Ex Bot 65:363–368

    Article  CAS  Google Scholar 

  • Gaitonde MK (1967) Spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Tang X, Ye M, Gul I, Chen H, Yan G, Chang SX, Liang Y (2021) Effects of silicon on the uptake and accumulation of arsenite and dimethylarsinic acid in rice (Oryza sativa L.). J Hazard Mater 409:124442

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Srivastava A, Srivastava S, Kumar A (2020) Phyto-genotoxicity of arsenic contaminated soil from Lakhimpur Kheri India on Vicia faba L. Chemosphere 241:125063

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Srivastava S, Saxena G, Kumar A (2022) Application of Pteris vittata . for phytoremediation of arsenic and biomonitoring of the process through cyto-genetic biomarkers of Trigonella foenum-graecum L. Physiol Mol Biol Plants 28(1):91–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Habig WH, Jacoby WB (1981) Assay for differentiation of glutathione S-transferases. Meth Enzymol 77:398–405

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–192

    Article  CAS  Google Scholar 

  • Ismail LM, Soliman MI, Abd El-Aziz MH, Abdel-Aziz HM (2022) Impact of silica ions and nano silica on growth and productivity of pea plants under salinity stress. Plants 11(4):494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Jahan B, AlAjmi MF, Rehman MT, Iqbal N, Irfan M, Sehar Z, Khan NA (2021) Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol Environ Saf 222:112535

    Article  CAS  PubMed  Google Scholar 

  • Khush Gurdev S (2013) Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breeding 132(5):433–436

    Article  Google Scholar 

  • Kumar N, Mallick S, Yadava RN, Singh AP, Sinha S (2013) Co-application of selenite and phosphate reduces arsenite uptake in hydroponically grown rice seedlings: toxicity and defence mechanism. Ecotox Environ Safety 91:171–179

    Article  CAS  Google Scholar 

  • Kumar A, Tripathi RD, Singh RP, Dwivedi S, Chakrabarty D, Mallick S, Trivedi PK, Adhikari B (2014) Evaluation of amino acid profile in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes under arsenic stress grown in hydroponic condition. Biologia Plantarum 58(4):733–742

    Article  CAS  Google Scholar 

  • Kumar A, Tripathi RD, Singh RP, Singh PK, Awasthi S, Trivedi PK, Chakrabarty D (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicol 23(7):1153–1163

    Article  CAS  Google Scholar 

  • Kumar A, Dixit G, Singh AP, Srivastava S, Mishra K, Tripathi RD (2016) Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism. Ecotoxicol Environ Saf 133:350–359

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh PK, Srivastava S, Dwivedi S, Tripathi RD, Awasthi G, Gupta K, Ansari MI (2020) A comparative study on effect of arsenic on thiolic ligands and phytochelatins in contrasting arsenic accumulating rice genotypes. Internat J Plant Environ 6(02):110–117

    Google Scholar 

  • Lange CN, Pedron T, Freire BM, Pereira RM, Batista BL (2020) Arsenic in rice grain. In the future of rice demand quality beyond productivity. Springer, Cham, pp 71–91

    Book  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) Grown in solution culture. J Exp Bot 55:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao F (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

  • Mitra A, Chatterjee S, Gupta DK (2020) Environmental arsenic exposure and human health risk. In arsenic water resources contamination. Springer, Cham, p 103e129

    Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Ghosh D, Mandal J, Bhowmick S, Mondal D, Choudhury S, Santra SC, Vithanage M, Biswas JK (2023) A cumulative assessment of plant growth stages and selenium supplementation on arsenic and micronutrients accumulation in rice grains. J Clean Prod 386:135764

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Pan D, Liu C, Yi J, Li X, Li F (2021) Different effects of foliar application of silica sol on arsenic translocation in rice under low and high arsenite stress. J Environ Sci 105:22–32

    Article  CAS  Google Scholar 

  • Pandey C, Gupta M (2018) Selenium amelioration of arsenic toxicity in rice shows genotypic variation: a transcriptomic and biochemical analysis. J Plant Physiol 231:168–181

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B, Bag M, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2011) Arsenic tolerances in rice (Oryza sativa L.) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995.

  • Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a mini-review. Environ Internat 35:512–515

    Article  CAS  Google Scholar 

  • Sahay S, Khan E, Praveen A, Panthri M, Mirza Z, Gupta M (2020) Sulphur potentiates selenium to alleviate arsenic-induced stress by modulating oxidative stress, accumulation and thiol-ascorbate metabolism in Brassica juncea L. Environ Sci Poll Res 27(11):11697–11713

    Article  CAS  Google Scholar 

  • Saito K, Kurosawa M, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-Acetylserine(thiol)-lyase]. Plant Physiol 106:887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma BK, Mugesh G (2008) Thiol cofactors for selenoenzymes and their synthetic mimics. Org Biomol Chem 6(6):965–974

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG, Tsaftaris AS, Chandlee JM, Skadsen RW (1983) Expression of the developmentally regulated catalase (Cat) genes in maize. Dev Genet 4(4):281–293

    Article  Google Scholar 

  • Seelig GF, Meister A (1984) γ-glutamyl cysteine synthetase: interactions of an essential sulfhydryl group. J Biol Chem 259:3534–3538

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Chakrabarty D, Dwivedi S, Kumar A, Singh SP, Sinam G, Niranjan A, Singh PC, Chatterjee S, Majumdar D, Tiwari M (2022) Nitric oxide-mediated alleviation of arsenic stress involving metalloid detoxification and physiological responses in rice (Oryza sativa L.). Environ Poll 297:118694

    Article  CAS  Google Scholar 

  • Srivastava S, Akkarakaran JJ, Sounderajan S, Shrivastava M, Suprasanna P (2016) Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: Impact on the expression of transporters and thiol metabolism. Geoderma 270:33–42

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Pathak S, Ponsin M, Hensawang S, Chanpiwat P, Yoeurn C, Phan K (2022) Sustainable solutions to arsenic accumulation in rice grown in south and south-east Asia. Crop Pasture Sci 73:149–159

    Article  CAS  Google Scholar 

  • Tiwari M, Kidwai M, Dutta P, Narayan S, Gautam N, Chawda K, Shirke PA, Mishra AK, Chakrabarty D (2022) A tau class glutathione-S-transferase (OsGSTU5) confers tolerance against arsenic toxicity in rice by accumulating more arsenic in root. J Hazard Mater 426:128100

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Upadhyay MK, Majumdar A, Srivastava AK, Bose S, Suprasanna S, Srivastava S (2022) Antioxidant enzymes and transporter genes mediate arsenic stress reduction in rice (Oryza sativa L.) upon thiourea supplementation. Chemosphere 292:133482

    Article  CAS  PubMed  Google Scholar 

  • Yadav B, Jogawat A, Gnanasekaran P, Kumari P, Lakra N, Lal SK, Pawar J, Narayan OP (2021) An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. Plant Gene 25:100264

  • Yang Y, Hu H, Fu Q, Zhu J, Zhang X, Xi R (2020) Phosphorus regulates As uptake by rice via releasing As into soil pore water and sequestrating it on Fe plaque. Sci Tot Environ 738:139869

    Article  CAS  Google Scholar 

  • Zhang J, Duan GL (2008) Genotypic difference in arsenic and cadmium accumulation by rice seedlings grown in hydroponics. J Plant Nut 31:2168–2182

Download references

Acknowledgements

The authors are thankful to Botany Department, Lucknow University, Lucknow for the facilities. Amit Kumar is thankful to SERB, DST, New Delhi for the award and financial assistance in form of SERB-NPDF.

Author information

Authors and Affiliations

Authors

Contributions

AK performed experimental work, prepared figures and writing original draft. SS, MIA and KG- writing, review & editing. AB and PKS helped in biochemical analysis. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Kiran Gupta or Sudhakar Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Anket Sharma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 120 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ansari, M.I., Singh, P.K. et al. Synergistic Effects of Selenium and Silicon Mitigate Arsenic Toxicity in Oryza sativa L.. J Plant Growth Regul 43, 1272–1286 (2024). https://doi.org/10.1007/s00344-023-11182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11182-x

Keywords

Navigation