Skip to main content
Log in

Plant–Fungus Interaction: A Stimulus–Response Theory

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plants are exposed to various severe constraints comprising damages caused by phytopathogens, which eventually lowers productivity. During plant–fungus interaction, the fungus absorbs host nutrients by secreting cell wall-degrading enzymes, toxins, suppressing plant defense, triggering programmed cell death, and shutting down plant defensive genes. Plants have various defense mechanisms to counteract the harmful effects of fungi including constitutive and induced defense systems that either directly or indirectly attack the fungus. However, throughout co-evolution, both pathogens and plants have acquired their combat systems at the molecular level in a see-saw fashion and this tug-of-war between them has evolved endlessly. Hence, we are still a long way from fully comprehending all the variables determining the winner of this arms race. Therefore, the present review will help to broaden our knowledge about the events occurring during plant–fungus interaction, unfolding a process of unexpected complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abebe W (2021) Review on plant defense mechanisms against insect pests. Int J Nov Res Interdiscip Stud 8(3):15–39

    Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S, Grover A (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 212–213:29–37

    Article  PubMed  Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Petkovsek MM, Veberic R, Phu ML, Solar A, Leslie CA, Dandekar AM (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balint-Kurti P (2019) The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol 20(8):1163–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR (2022) Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant–pathogen interactions. Proteomes 10(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreca D (2021) Mechanisms of plant antioxidants action. Plants 10(1):35

    Article  Google Scholar 

  • Barwant MM (2021) Plants as food source; future prospective. In: Local food and community empowerment through tourism, vol II. Eureka Publication

  • Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H (2018) Salicylic Acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant Cell Physiol 59:8–16

    Article  CAS  PubMed  Google Scholar 

  • Bohm H, Albert I, Fan L, Reinhard A, Nurnberger T (2014) Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20:47–54

    Article  PubMed  Google Scholar 

  • Boots M, Best A (2018) The evolution of constitutive and induced defences to infectious disease. Proc R Soc B 285:20180658

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutrot F, Zipfel C (2017) Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55(1):257–286

    Article  CAS  PubMed  Google Scholar 

  • Brading PA, Verstappen EC, Kema GH, Brown JK (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92(4):439–445

    Article  PubMed  Google Scholar 

  • Bresciani G, da Cruz IBM, Gonzalez-Gallego J (2015) Manganese superoxide dismutase and oxidative stress modulation. Adv Clin Chem 68:87–130

    Article  CAS  PubMed  Google Scholar 

  • Brosch G, Ransom R, Lechner T, Walton JD, Loidl P (1995) lnhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 7:1941–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camagna M, Takemoto D (2018) Hypersensitive response in plants. In: eLS. Wiley, Chichester, pp 1–7

  • Cardoza YJ, Lait CG, Schmelz EA, Huang J, Tumlinson JH (2003) Fungus-induced biochemical changes in peanut plants and their effect on development of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae. Environ Entomol 32(1):220–228

    Article  CAS  Google Scholar 

  • Castroverde CDM, Nazar RN, Robb J (2010) Defence genes in tomato. Nova Sci Publishers, New York, p 82

    Google Scholar 

  • Cha JY, Kim JY, Jung IJ, Kim MR, Melencion A, Alam SS, Yun DJ, Lee SY, Kim MG, Kim WY (2014) NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought. Plant Physiol Biochem 80:184–191

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Chen H, Liu F, Fu ZQ (2022) PTI and ETI: convergent pathways with diverse elicitors. Trends Plant Sci 27(2):113–115

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Wang YT, Pan XB, Xi ZM (2019) Amelioration of cold-induced oxidative stress by exogenous 24-epibrassinolide treatment in grapevine seedlings: toward regulating the ascorbate-glutathione cycle. Sci Hortic 244:379–387

    Article  CAS  Google Scholar 

  • Chhabra R, Kaur N, Bala A (2022) Differential biochemical response of basmati and non-basmati rice seeds upon bakanae (Fusarium fujikuroi) infection. Vegetos. https://doi.org/10.1007/s42535-022-00411-5

    Article  Google Scholar 

  • Chin DC, Hsieh CC, Lin HY, Yeh KW (2016) A low glutathione redox state couples with a decreased ascorbate redox ratio to accelerate flowering in Oncidium orchid. Plant Cell Physiol 57(2):423–436

    Article  CAS  PubMed  Google Scholar 

  • Dalio RJD, Paschoal D, Arena GD, Magalhaes DM, Oliveira TS, Merfa MV, Maximo HJ, Machado MA (2021) Hypersensitive response: from NLR pathogen recognition to cell death response. Ann Appl Biol 178(2):268–280

    Article  CAS  Google Scholar 

  • Dar MI, Naikoo MI, Khan FA (2016) Osmolytes and plants acclimation to changing environment: emerging omics technologies, Springer Nature India Pvt. Ltd., pp 155–66

  • Datta R, Singh H, Gupta VS, Ranjekar PK, Dhaliwal HS (1999) Gene-for-gene relationship for resistance in wheat to isolates of Karnal bunt, Neovossia indica. Plant Breed 118:362–364

    Article  Google Scholar 

  • Devi LE, Kumar S, Singh TB, Sharma SK, Beemrote A, Devi CP, Chongtham SK, Singh CH, Yumlembam RA, Haribhushan A, Prakash N, Wani SH (2017) Adaptation strategies and defence mechanisms of plants during environmental stress. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_20

    Chapter  Google Scholar 

  • Eseola AB, Ryder LS, Oses-Ruiz M, Findlay K, Yan X, Cruz-Mireles N, Molinari C, Garduno-Rosales M, Talbot NJ (2021) Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Gene Biol 154:103562

    Article  CAS  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathol 32:653–669

    Google Scholar 

  • Flor HH (1946) Genetics of pathogenicity in Melampsora lini. J Agric Res 73:335–357

    Google Scholar 

  • Foster AJ, Ryder LS, Kershaw MJ, Talbot NJ (2017) The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. Environ Microbiol 19:1008–1016

    Article  PubMed  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2017) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig 114:1752–1761

    Article  Google Scholar 

  • Grossart HP, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K (2019) Fungi in aquatic ecosystems. Nat Rev Microbiol 17:339–354

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Breakspear A, Zhao G, Gao L, Kistler HC, Xu JR, Ma LJ (2016) Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant–pathogenic fungi: Fusarium graminearum and F. verticillioides. Mol Plant Pathol 17(2):196–209

    Article  CAS  PubMed  Google Scholar 

  • Howden AJM, Huitema E (2012) Effector-triggered post-translational modifications and their role in suppression of plant immunity. Front Plant Sci 3:160

    Article  PubMed  PubMed Central  Google Scholar 

  • John V, Maurya AK, Murmu R (2020) Plants defence mechanisms against pathogens. In: Plants defence mechanisms against pathogens, pp 142–145

  • Joosten MHAJ, Cozijnsen TJ, De Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367:384–386

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jun SY, Sattler SA, Cortez GS, Vermerris W, Sattler SE, Kanga C (2018) Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia lyase. Plant Physiol 176:1452–1468

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Bhardwaj RD, Kaur J, Kaur S (2022) Induction of defense-related enzymes and pathogenesis-related proteins imparts resistance to barley genotypes against spot blotch disease. J Plant Growth Regul 41:682–696

    Article  CAS  Google Scholar 

  • Khare D, Choi H, Huh SU, Bassin B, Kim J, Martinoi E, Sohn KH, Paek KH, Lee Y (2017) Arabidopsis ABCG34 contributes to defence against necrotrophic pathogens by mediating the secretion of camalexin. Proc Natl Acad Sci USA 114(28):5712–5720

    Article  ADS  Google Scholar 

  • Kumar H, Priya YS, Kumar M, Elangovan V (2014) Studies on biochemical changes of fungal infected mulberry leaves and their effect on growth and cocoon characteristics of the silkworm (Bombyx mori) (Lepidoptera: Bombycidae). Entomol Gen 35(1):1–10

    Article  Google Scholar 

  • Kumara UMA, Cooray PLVN, Ambanpola N, Thiruchchelvan N (2022) Plant–pathogen interaction: mechanisms and evolution. In: Soni R, Suyal DC, Yadav AN, Goel R (eds) Developments in applied microbiology and biotechnology, trends of applied microbiology for sustainable economy. Academic Press, London, pp 655–687

    Google Scholar 

  • Kunert KJ, Foyer CH (2023) The ascorbate/glutathione cycle. In: Mittler R, Breusegem FV (eds) Advances in botanical research, vol 105. Academic Press, London, pp 77–112

    Google Scholar 

  • Lapin D, Van den Ackerveken G (2013) Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–554

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhu XM, Zhang YR, Cai YY, Wang JY, Liu MY, Wang JY, Bao JD, Lin FC (2022) Research on the molecular interaction mechanism between plants and pathogenic fungi. Int J Mol Sci 23:4658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Atanasov KE, Tiburcio AF, Alcazar R (2019) The polyamine putrescine contributes to H2O2 and RbohD/F-dependent positive feedback loop in Arabidopsis PAMP-triggered immunity. Front Plant Sci 10:894

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew S, Abraham TE, Zakaria ZA (2015) Reactivity of phenolic compounds towards free radicals under in vitro conditions. J Food Sci Technol 52:5790–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Zhang L, Oblessuc PR, He SY (2017) Stomatal defense a decade later. Plant Physiol 174(2):561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Zandalinas SI, Fichman Y, Breusegem FV (2022) Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 23:663–679

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq R, Jan S, Sharma MK, Raja RHS (2022) Gummosis of stone fruit. In: Ozturk M, Khan SM, Altay V, Efe R, Egamberdieva D, Khassanov FO (eds) Biodiversity, conservation and sustainability in Asia. Springer, Cham, pp 581–596

    Chapter  Google Scholar 

  • Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS (2020) The PTI to ETI continuum in phytophthora-plant interactions. Front Plant Sci 11:593905

    Article  PubMed  PubMed Central  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osbourn AE, Clarke BR, Lunness P, Scott PR, Daniels MJ (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol Mol Plant Pathol 45:457–467

    Article  CAS  Google Scholar 

  • Pontes JGM, Fernandes LS, Dos Santos RV, Tasic L, Fill TP (2020) Virulence factors in the phytopathogen-host interactions: an overview. J Agric Food Chem 68:7555–7570

    Article  CAS  PubMed  Google Scholar 

  • Puntscher H, Cobankovic I, Marko D, Warth B (2019) Quantitation of free and modified Alternaria mycotoxins in European food products by LC–MS/MS. Food Control 102:157–165

    Article  CAS  Google Scholar 

  • Radojicic A, Li X, Zhang Y (2018) Salicylic acid: a double-edged sword for programed cell death in plants. Front Plant Sci 9:1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragunathan D, Prakash V, Kumar RV (2021) Molecular biology of antiviral arms race between plants and viruses. In: Gaur RK, Paul Khurana SM, Sharma P, Hohn T (eds) Plant virus–host interaction, 2nd edn. Academic Press, London, pp 331–358

    Chapter  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that over express glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Sauban M, Jibril Bello HJ, Ahmad SK, Harisu YU (2016) Plant and pathogens: pathogen recognition, invasion and plant defence mechanism. Int J Curr Microbiol Appl Sci 5(6):247–257

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessaraki M (2012) Reactive oxygen species, oxidative damage and antioxidative defence mechanism in plants under stressful conditions. J Bot 3:26–32

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2016) Oxidative stress and antioxidative defense systems in plants growing under abiotic stresses. In: Handbook of plant and crop stress. CRC Press, Boca Raton, pp 109–158

  • Sharma SK, Singh D, Pandey H, Jatav RB, Singh V, Pandey D (2022) An overview of roles of enzymatic and nonenzymatic antioxidants in plant. In: Aftab T, Hakeem KR (eds) Antioxidant defense in plants. Springer, Singapore, pp 1–13

    Google Scholar 

  • Sicilia A, Catara V, Scialo E, Lo Piero AR (2021) Fungal infection induces anthocyanin biosynthesis and changes in DNA methylation configuration of blood orange [Citrus sinensis L. (Osbeck)]. Plants 10:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva BN, Oliveira LM, Mochko ACR, Chaves JAA, Aucique-Perez CE, Rodrigues FA (2021) Physiological and biochemical changes in wheat plants infected by Pyricularia oryzae caused by thermal oscillations. Physiol Mol Plant Pathol 115:101646

    Article  CAS  Google Scholar 

  • Silveira PR, Aucique-Perez CE, Cruz MF, Rodrigues FD (2021) Biochemical and physiological changes in maize plants supplied with silicon and infected by Exserohilum turcicum. J Phytopathol 169(7–8):393–408

    Article  CAS  Google Scholar 

  • Singla P, Bhardwaj RD, Kaur S, Kaur J (2020a) Stripe rust induced defence mechanisms in the leaves of contrasting barley genotypes (Hordeum vulgare L.) at the seedling stage. Protoplasma 257:169–181

    Article  CAS  PubMed  Google Scholar 

  • Singla P, Bhardwaj RD, Kaur S, Kaur J (2020b) Metabolic adjustments during compatible interaction between barley genotypes and stripe rust pathogen. Plant Physiol Biochem 147:295–302

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar T, Deepa B (2023) Phytoalexins: defend systems of plants and pharmacological potential—a systematic review. Int J Eng Technol Manag Sci 7(2):319–326

    Google Scholar 

  • Szepesi A, Szollosi R (2018) Mechanism of proline biosynthesis and role of proline metabolism enzymes under environmental stress in plants. In: Plant metabolites and regulation under environmental stress. Academic Press, London, pp 337–353

  • Thakur A, Verma S, Reddy VP, Sharma D (2019) Hypersensitive responses in plants. Agric Rev 40(2):113–120

    Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JDG (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wani MY, Mehraj S, Rather RA, Rani S, Hajam OA, Ganie NA, Mir MR, Baqual MF, Kamili AS (2018) Systemic acquired resistance (SAR): a novel strategy for plant protection with reference to mulberry. Int J Chem Stud 2:1184–1192

    Google Scholar 

  • Waszczak C, Carmody M, Kangasjarvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Chen H, Curtis C, Fu ZQ (2014) How plants deploy effector-triggered immunity to combat pathogens. Virulence 5:710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo H, Greene GH, Yuan M, Xu G, Burton D, Liu L, Marques J, Dong X (2020) Translational regulation of metabolic dynamics during effector-triggered immunity. Mol Plant 13:88–98

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Gao Y, Zhang L, Zhou Y (2021) The plant cell wall: biosynthesis, construction, and functions. J Integr Plant Biol 63(1):251–272

    Article  PubMed  Google Scholar 

Download references

Funding

This work received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PS: conceptualization, writing—original draft, review and editing. RDB: conceptualization, review and editing. SS: supervision, review and editing. S: review and editing.

Corresponding author

Correspondence to Prabhjot Singla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This work received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Additional information

Handling Editor: Pramod Kumar Nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, P., Bhardwaj, R.D., Sharma, S. et al. Plant–Fungus Interaction: A Stimulus–Response Theory. J Plant Growth Regul 43, 369–381 (2024). https://doi.org/10.1007/s00344-023-11100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11100-1

Keywords

Navigation