Skip to main content

Advertisement

Log in

Exogenous Application of Melatonin Improves the Growth and Productivity of Two Broccoli (Brassica oleracea L.) Cultivars Under Salt Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salt accumulation in irrigated soils is a worldwide hazard to plants, which adversely reduces crop productivity. Broccoli is considered moderately tolerant to salinity. Melatonin is a multifunctional organic biomolecule with significant importance in plants against abiotic stresses. In this experiment, we studied the role of exogenously applied melatonin on broccoli cultivars under salinity. For this experiment, two popular cultivars (Marathon and Greenport) were selected. Three levels of melatonin (control, 50, & 100 µM) were sprayed on broccoli cultivars exposed to salt stress (0, 40, 80, & 120 mM) and under non-stressed conditions. The results showed that exogenous melatonin application improved morphological characteristics of broccoli, i.e., plant height, the number of leaves, head weight, head diameter, root length, shoot length, leaf relative water content, the number of florets, shoot fresh weight, root fresh, and dry weight. The application of 50-µM melatonin as foliar spray increased TSS, Acidity, Vitamin C, β-carotene, and total phenolics in the broccoli head. Additionally, the foliar spray of melatonin enhanced chlorophyll (a & b) in the head and leaves and reduced antioxidant damage under salinity by enhancing the activity of antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Lower malondialdehyde (MDA), hydrogen peroxide (H2O2), and higher Proline and glycine betaine (GB) contents were observed in exogenously applied melatonin than in controlled plants under salinity stress in both cultivars of the broccoli. The exposure to salinity (NaCl) determined an increase in Na+ and K+ concentrations in plant tissues. However, exogenously applied melatonin reduced the uptake of Na+ from the soil. Among the cultivars, Marathon showed more tolerance against salt stress than Greenport. Collectively, our data provide evidence that the exogenous application of melatonin may ameliorate the adverse effects of salinity on broccoli plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo-Baker ABAE, Zakir A (2020) Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul 39(3):1293–1306

    CAS  Google Scholar 

  • Afzal I, Basra SA, Iqbal A (2005) The effects of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1(1):6–15

    Google Scholar 

  • Ahmad R, Hussain S, Anjum MA, Khalid MF, Saqib M, Zakir I, Hassan A, Fahad S, Ahmad S (2019) Oxidative stress and antioxidant defense mechanisms in plants under salt stress. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant Abiotic Stress Tolerance 191–205, Springer.

  • Ahmad S, Cui W, Kamran M, Ahmad I, Meng X, Wu X, Su W, Javed T, El-Serehy HA, Jia Z, Han Q (2021) Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. J Plant Growth Regul 40(3):1270–1283

    CAS  Google Scholar 

  • Akram NA, Hafeez N, Farid-ul-Haq M, Ahmad A, Sadiq M, Ashraf M (2020) Foliage application and seed priming with nitric oxide causes mitigation of salinity-induced metabolic adversaries in broccoli (Brassica oleracea L.) plants. Acta Physiol Plant 42(10):1–9

    Google Scholar 

  • Alam H, Khattak JZ, Ksiksi TS, Saleem MH, Fahad S, Sohail H, Ali Q, Zamin M, El-Esawi MA, Saud S, Jiang X (2021) Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiol Plant 172(2):1336–1351

    CAS  PubMed  Google Scholar 

  • Ali M, Kamran M, Abbasi GH, Saleem MH, Ahmad S, Parveen A, Malik Z, Afzal S, Ahmar S, Dawar KM, Ali S (2021) Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. J Plant Growth Regul 40(5):2236–2248

    CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Altaf MM, Jahan MS, Khan LU (2021) Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J Soil Sci Plant Nutr 21(3):1842–1855

    CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19:789–797

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann Bot 121(2):195–207

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in beta vulgaris. Plant Physiol 24(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Ahmad R, Afzal M, Tahir MA, Kanwal S, Maqsood MA (2009) Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L) under salt stress. J Agron Crop Sci 195(4):284–291

    CAS  Google Scholar 

  • Bahcesular B, Yildirim ED, Karaçocuk M, Kulak M, Karaman S (2020) Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L) under salinity stress. Ind Crops Prod 146:112165

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Sci 39:205–207

    CAS  Google Scholar 

  • Brengi SH, Abd Allah EM, Abouelsaad IA (2022) Effect of melatonin or cobalt on growth, yield and physiological responses of cucumber (Cucumis sativus L.) plants under salt stress. J Saudi Soc Agric Sci 21(1):51–60

    Google Scholar 

  • Butcher K, Wick AF, DeSutter T, Chatterjee A, Harmon J (2016) Soil salinity: a threat to global food security. Agron J 108(6):2189–2200

    CAS  Google Scholar 

  • Cakmak I, Horst JH (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    CAS  Google Scholar 

  • Casajús V, Civello P, Martínez G, Howe K, Fish T, Yang Y, Thannhauser T, Li L, Lobato MG (2021) Effect of continuous white light illumination on glucosinolate metabolism during postharvest storage of broccoli. LWT 145:111302

    Google Scholar 

  • Castañares JL, Bouzo CA (2019) Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L) under salt stress. Hort Plant J 5(2):79–87

    Google Scholar 

  • Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK (2022) Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. Planta 255(3):1–25

    Google Scholar 

  • De Pascale S, Maggio A, Barbieri G (2005) Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Eur J Agron 23(3):254–264

    Google Scholar 

  • Del Amor FM, Cuadra-Crespo P (2011) Alleviation of salinity stress in broccoli using foliar urea or methyl-jasmonate: analysis of growth, gas exchange, and isotope composition. Plant Growth Regul 63(1):55–62

    Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    CAS  Google Scholar 

  • Di Gioia F, Rosskopf EN, Leonardi C, Giuffrida F (2018) Effects of application timing of saline irrigation water on broccoli production and quality. Agric Water Manag 203:97–104

    Google Scholar 

  • ElSayed AI, Boulila M, Rafudeen MS, Mohamed AH, Sengupta S, Rady M, Omar AA (2020) Melatonin regulatory mechanisms and phylogenetic analyses of melatonin biosynthesis related genes extracted from peanut under salinity stress. Plants 9(7):854

    CAS  PubMed  PubMed Central  Google Scholar 

  • ElSayed AI, Rafudeen MS, Gomaa AM, Hasanuzzaman M (2021) Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense-related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance. Physiol Plant 173(4):1369–1381

    CAS  PubMed  Google Scholar 

  • Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann App Biol 145(2):185–192

    CAS  Google Scholar 

  • Flores P, Pedreño MA, Almagro L, Hernández V, Fenoll J, Hellín P (2021) Increasing nutritional value of broccoli with seaweed extract and trilinolein. J Food Compos Anal 98:103834

    CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I occurrence in higher plants. Plant Physiol 59(2):309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuffrida F, Gangi D, Giurato R, Leonardi C (2012) Effects of NaCl salinity on yield, quality and mineral composition of broccoli and cauliflower. In VI Int Symp on Brassicas and XVIII Crucifer Genet Workshop 1005:531–538

    Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water-soluble quaternary ammonium compounds. Plant Soil 70:303–307

    CAS  Google Scholar 

  • Hassini I, Martinez-Ballesta MC, Boughanmi N, Moreno DA, Carvajal M (2017) Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci Horti 226:141–151

    CAS  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    CAS  PubMed  Google Scholar 

  • Ilahy R, Tlili I, Pék Z, Montefusco A, Siddiqui MW, Homa F, Hdider C, R’Him T, Lenucci LH, MS, (2020) Pre-and post-harvest factors affecting glucosinolate content in broccoli. Front Nut 7:147

    Google Scholar 

  • Islam MA, Warwick N, Koech R, Amin MN, de Bruyn LL (2020) The importance of farmers’ perceptions of salinity and adaptation strategies for ensuring food security: evidence from the coastal rice growing areas of Bangladesh. Sci Total Environ 727:138674

    CAS  PubMed  Google Scholar 

  • Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R (2020) Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Safe 197:110593

    CAS  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Hasan M, El-Yazied AA, Alabdallah NM, Hajjar D, Altaf MA, Sun J, Guo S (2021) Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA-and GA-mediated pathways. Front Plant Sci 12:381

    Google Scholar 

  • Jeffery EH, Brown AF, Kurilich AC, Keck AS, Matusheski N, Klein BP, Juvik JA (2003) Variation in content of bioactive components in broccoli. J Food Compos Anal 16(3):323–330

    CAS  Google Scholar 

  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38(4):1–9

    Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L) under salinity stress. Sci Rep 7(1):1–14

    Google Scholar 

  • Kamiab F (2020) Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. J Plant Nutri 43(10):1468–1484

    CAS  Google Scholar 

  • Keck AS, Qiao Q, Jeffery EH (2003) Food matrix effects on bioactivity of broccoli-derived sulforaphane in liver and colon of F344 rats. J Agric Food Chem 51(11):3320–3327

    CAS  PubMed  Google Scholar 

  • Khalid MF, Hussain S, Anjum MA, Morillon R, Ahmad S, Ejaz S, Hussain M, Jaafar HZ, Alrashood ST, Ormenisan AN (2021) Physiological and biochemical responses of Kinnow mandarin grafted on diploid and tetraploid Volkamer lemon rootstocks under different water-deficit regimes. PLoS ONE 16(4):0247558

    Google Scholar 

  • Latef AA, Miransari M (2014) The role of Arbuscular mycorrhizal fungi in alleviation of salt stress. The role of Arbuscular mycorrhizal fungi in alleviation of salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 23–38

    Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53(3):298–306

    CAS  PubMed  Google Scholar 

  • Li Z, Wang W, Li G, Guo K, Harvey P, Chen Q, Zhao Z, Wei Y, Li J, Yang H (2016) MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L) under NaCl stress. Protoplasma 253(6):1541–1556

    CAS  PubMed  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Pei X, Yin S, Lang X, Zhao X, Qu GZ (2019) Plant hormone treatments to alleviate the effects of salt stress on germination of Betula platyphylla seeds. J Forest Res 30(3):779–787

    CAS  Google Scholar 

  • Liu J, Zhang R, Sun Y, Liu Z, Jin W, Sun Y (2016) The beneficial effects of exogenous melatonin on tomato fruit properties. Sci Hortic 207:14–20

    CAS  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann Rev Plant Biol 52:561e591

    Google Scholar 

  • Mukherjee S, Bhatla SC (2021) Exogenous melatonin modulates endogenous H2S homeostasis and L-cysteine desulfhydrase activity in salt-stressed tomato (Solanum lycopersicum L. var. cherry) seedling cotyledons. J Plant Growth Regul 40(6):2502–2514

    CAS  Google Scholar 

  • Naing AH, Kim CK (2021) Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses. Physiol Plant 172(3):1711–1723

    CAS  PubMed  Google Scholar 

  • Nxele X, Klein A, Ndimba BK (2017) Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S Afr J Bot 108:261–266

    CAS  Google Scholar 

  • Osman HS, Rady A, Awadalla A, Omara AED, Hafez EM (2022) Improving the antioxidants system, growth, and sugar beet quality subjected to long-term osmotic stress by phosphate solubilizing bacteria and compost tea. Int J Plant Prod 16(1):119–135

    Google Scholar 

  • Pan X, Geng Y, Zhang W, Li B, Chen J (2006) The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica 30(3):333–341

    Google Scholar 

  • Rehaman A, Mishra AK, Ferdose A, Per TS, Hanief M, Jan AT, Asgher M (2021) Melatonin in plant defense against abiotic stress. Forests 12(10):1404

    Google Scholar 

  • Sadak MS, Abdelhamid MT (2015) Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanzen 67(3):119–129

    CAS  Google Scholar 

  • Sardar H, Naz S, Ejaz S, Rarooq O, Rehman AU, Javed MS, Akhtar G (2021a) Effect of foliar application of zinc oxide ongrowth and photosynthetic traits of cherry tomato under calcareous soil conditions. Acta Sci Pol Hortorum Cultus 20:91–99

    Google Scholar 

  • Sardar H, Nisar A, Anjum MA, Naz S, Ejaz S, Ali S, Javed MS, Ahmad R (2021b) Foliar spray of moringa leaf extract improves growth and concentration of pigment, minerals and stevioside in stevia (Stevia rebaudiana Bertoni). Ind Crops Prod 166:113485

    CAS  Google Scholar 

  • Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petri- dou, M, (2012) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium ×Prunus cerasus). Plant Physiol Biochem 61:162–168

    CAS  PubMed  Google Scholar 

  • Shahzadi I, Iqbal M, Rasheed R, Ashraf MA, Perveen S, Hussain M (2017) Foliar application of selenium increases fertility and grain yield in bread wheat under contrasting water availability regimes. Acta Physiol Plant 173(39):1–11

    Google Scholar 

  • Sheteiwy MS, Shao H, Qi W, Daly P, Sharma A, Shaghaleh H, Hamoud YA, El-Esawi MA, Pan R, Wan Q, Lu H (2021) Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J Sci Food Agric 101(5):2027–2041

    CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA (2019) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 20(2):353

    PubMed  PubMed Central  Google Scholar 

  • Sofy MR, Elhawat N, Alshaal T (2020) Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicol Environ Saf 200:110732

    CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16. https://doi.org/10.1016/j.envexpbot.2007.06.006

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53(1):11–20

    PubMed  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016a) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54(1):19–27

    Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sunb Y (2016b) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54(1):19–27. https://doi.org/10.1007/s11099-015-0140-3

    Article  CAS  Google Scholar 

  • Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69(5):963–974

    CAS  PubMed  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9(3):93462

    Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    CAS  PubMed  Google Scholar 

  • West LG, Meyer KA, Balch BA, Rossi FJ, Schultz MR, Haas GW (2004) Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. J Agric Food Chem 52(4):916–926

    CAS  PubMed  Google Scholar 

  • Wolf B (1982) A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13(12):1035–1059

    CAS  Google Scholar 

  • Yan F, Zhang J, Li W, Ding Y, Zhong Q, Xu X, Wei H, Li G (2021) Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiol Biochem 163:367–375

    CAS  PubMed  Google Scholar 

  • Yeo AR, Caporn SJM, Flowers TJ (1985) The effect of salinity upon photosynthesis in rice (Oryza sativa L.): gas exchange by individual leaves in relation to their salt content. J Exp Bot 36(8):1240–1248

    CAS  Google Scholar 

  • Yun P, Xu L, Wang SS, Shabala L, Shabala S, Zhang WY (2018) Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul. 86(2):323–331

    CAS  Google Scholar 

  • Zaghdoud C, Alcaraz-Lopez C, Mota-Cadenas C, Martínez-Ballesta MDC, Moreno DA, Ferchichi A, Carvajal M (2012) Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement. Sci World J 291435(2012):1-12. https://doi.org/10.1100/2012/291435

  • Zahedi SM, Abdelrahman M, Hosseini MS, Hoveizeh NF, Tran LSP (2019) Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ Pollut 253:246–258

    CAS  PubMed  Google Scholar 

  • Zahedi SM, Hosseini MS, Abadía J, Marjani M (2020) Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.). Plant Physiol Biochem 149:313–323. https://doi.org/10.1016/j.plaphy.2020.02.021

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Wu T, Zhao X, Wang Z, Chen Y (2021) Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L). BMC Plant Biol 21(1):1–16

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19(8):765–768

    CAS  PubMed  Google Scholar 

  • Zhang P, Liu L, Wang X, Wang Z, Zhang H, Chen J, Liu X, Wang Y, Li C (2021) Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets (Beta vulgaris L.). Plants 10(5):886

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Horticulture, Bahauddin Zakariya University Multan, Pakistan for providing the laboratory for analysis and financial requirements of the work provided by the ORIC BZU-funded project (ORIC/2022/2015) entitled “Investigating the role of melatonin on broccoli cultivars under salt stress.”

Author information

Authors and Affiliations

Authors

Contributions

HS contributed to supervision, conceptualization, and writing of the original draft, MAS contributed to sampling and data collection. SA contributed to validation and investigation. SN contributed to software and formal analysis. SE contributed to methodology and investigation, RA and AA contributed to reviewing & editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hasan Sardar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: M. Naeem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, H., Ramzan, M.A., Naz, S. et al. Exogenous Application of Melatonin Improves the Growth and Productivity of Two Broccoli (Brassica oleracea L.) Cultivars Under Salt Stress. J Plant Growth Regul 42, 5152–5166 (2023). https://doi.org/10.1007/s00344-023-10946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-10946-9

Keywords

Navigation