Skip to main content

Advertisement

Log in

Melatonin Application at Different Doses Changes the Physiological Responses in Favor of Cabbage Seedlings (Brassica oleracea var. capitata) Against Flooding Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

In recent physiology studies, the number of chemical-based agents applied to allow the recovery of plants under different stress conditions has greatly increased, and melatonin is one significant novel one among these agents. Extremely high and low precipitation regimes are two of the most important factors limiting agricultural production and resulting in drought and flooding stresses. The present study aimed to investigate the effects of melatonin on the physiological responses of early-growth stage seedlings to flooding stress. In this context, cabbage seedlings were subjected to excess water followed by measurement of the essential parameters, such as photosynthesis, antioxidant enzymes, chlorophyll fluorescence, and certain agronomic features. The results indicated that underground fresh mass (UFM) and dry mass (UDM), leaf area (LA), chlorophyll (Chl b) content, carotenoid (CT) content, relative water content (RWC), and protein (PT) content in cabbage seedlings were increased, while the levels of chlorophyll fluorescence (Fv/Fm) and superoxyde dismutase (SOD), peroxidase (POX), and catalase (CAT) levels were stable in flooding-stressed cabbage seedlings treated with 150 µM melatonin. Proline content was significantly reduced in the 150 µM melatonin treatment group. The photosynthetic parameters of cabbage seedlings under the flooding stress condition were not much affected by changes in the stoichiometry of the Chla and Chlb ratio. Consequently, improvements were observed at varying rates, and the effects of flooding stress were alleviated in the melatonin-treated cabbage seedlings. It was, accordingly, inferred that treatment with 150 mM melatonin exerted substantial effects in terms of suppressing the detrimental effects of flooding stress in cabbage seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal S, Pandey V (2004) Antioxidant enzyme responses to nacl stress in Cassia angustifolia. Biol Plant 48(4):555–560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7

    Article  CAS  Google Scholar 

  • Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE 13(9):e202175. https://doi.org/10.1371/journal.pone.0202175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altaf MA, Shahid R, Ren M‑X, Naz S, Altaf MM, Khan LU, Tiwari RK, Lal MK, Shahid MA, Kumar R, Nawaz MA, Jahan MS, Jan BL, Ahmad P (2022) Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11(2):309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini R, Federico R (1989) Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. J Plant Physiol 135(2):212–217. https://doi.org/10.1016/S0176-1617(89)80179-8

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48. https://doi.org/10.1016/j.tplants.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313

    Article  CAS  PubMed  Google Scholar 

  • Barickman TC, Simpson CR, Sams CE (2019) Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants 8(6):160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly A (1955) [136] Assay of catalases and peroxidases

    Book  Google Scholar 

  • Coussement JR, Villers SLY, Nelissen H, Inzé D, Steppe K (2021) Turgor-time controls grass leaf elongation rate and duration under drought stress. Plant Cell Environ 44(5):1361–1378. https://doi.org/10.1111/pce.13989

    Article  CAS  PubMed  Google Scholar 

  • da-Silva CJ, do Amarante L (2020) Short-term nitrate supply decreases fermentation and oxidative stress caused by waterlogging in soybean plants. Environ Exp Bot 176:104078. https://doi.org/10.1016/j.envexpbot.2020.104078

    Article  CAS  Google Scholar 

  • Dadasoglu E, Turan M, Ekinci M, Argin S, Yildirim E (2022) Alleviation mechanism of melatonin in chickpea (Cicer arietinum L.) under the salt stress conditions. Horticulturae 8(11):1066

    Article  Google Scholar 

  • De Pedro LF, Mignolli F, Scartazza A, Melana Colavita JP, Bouzo CA, Vidoz ML (2020) Maintenance of photosynthetic capacity in flooded tomato plants with reduced ethylene sensitivity. Physiol Plant 170(2):202–217. https://doi.org/10.1111/ppl.13141

    Article  CAS  PubMed  Google Scholar 

  • van Dongen JT, Licausi F (2015) Oxygen sensing and signaling. Annu Rev Plant Biol 66:345–367

    Article  PubMed  Google Scholar 

  • ElSayed AI, Rafudeen MS, Gomaa AM, Hasanuzzaman M (2021) Exogenous melatonin enhances the reactive oxygen species metabolism, antioxidant defense-related gene expression, and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance. Physiol Plant 173(4):1369–1381. https://doi.org/10.1111/ppl.13372

    Article  CAS  PubMed  Google Scholar 

  • FAO F (2018) The impact of disasters and crises on agriculture and food security (Report)

    Google Scholar 

  • Feng B, Zhang Y, Bourke R (2021) Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat Hazards 106(1):613–627. https://doi.org/10.1007/s11069-020-04480-0

    Article  Google Scholar 

  • Gibbs J, Greenway H (2003) Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30(3):353. https://doi.org/10.1071/pp98095_er

    Article  PubMed  Google Scholar 

  • Greenway H, Armstrong W (2018) Energy-crises in well-aerated and anoxic tissue: does tolerance require the same specific proteins and energy-efficient transport? Funct Plant Biol 45(9):877–894

    Article  CAS  PubMed  Google Scholar 

  • Guan C, Cui X, Liu H, Li X, Li M, Zhang Y (2020) Proline biosynthesis enzyme genes confer salt tolerance to switchgrass (Panicum virgatum L.) in cooperation with polyamines metabolism. Front Plant Sci 11:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84(2):450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Xiaoyu D, Yong C, Xiling Z (2021) Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regul 94(2):161–170. https://doi.org/10.1007/s10725-021-00700-0

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  • Herrera A (2013) Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. Front Plant Sci 4:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinzadehtalaei P, Ishadi NK, Tabari H, Willems P (2021) Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations. J Hydrol Reg Stud 598:126239. https://doi.org/10.1016/j.jhydrol.2021.126239

    Article  Google Scholar 

  • Imran M, Aaqil Khan M, Shahzad R, Bilal S, Khan M, Yun B‑W, Khan AL, Lee I‑J (2021) Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 26(17):5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Positive role of 1‑aminocyclopropane-1-carboxylate deaminase-producing endophytic Streptomyces sp. GMKU 336 on flooding resistance of mung bean. Agric Nat Resour 52(4):330–334. https://doi.org/10.1016/j.anres.2018.09.008

    Article  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Hasan MM, El-Yazied AA, Alabdallah NM, Hajjar D, Altaf MA, Sun J, Guo S (2021) Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA-and GA-mediated pathways. Front Plant Sci 12:650955

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817(1):182–193

    Article  CAS  PubMed  Google Scholar 

  • Jia T, Ito H, Tanaka A (2016) Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. Planta 244(5):1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Hima Kumari P, Sunita M, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Higgs D, Ince F, Amador BM, Cakir A, Sakar E (2003) Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J Plant Nutr 26(4):807–820. https://doi.org/10.1081/pln-120018566

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Fürniss S, Rennenberg H (2002) Impact of waterlogging on the N‑metabolism of flood tolerant and non-tolerant tree species. Plant Cell Environ 25(8):1039–1049

    Article  Google Scholar 

  • Lawson T, Vialet-Chabrand S (2019) Speedy stomata, photosynthesis and plant water use efficiency. New Phytol 221(1):93–98. https://doi.org/10.1111/nph.15330

    Article  PubMed  Google Scholar 

  • Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LA, Bailey-Serres J (2011) Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol 190(2):457–471

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019) Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Hortic (Amsterdam) 246:34–43. https://doi.org/10.1016/j.scienta.2018.10.058

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1(1):F4.3.1–F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

    Article  Google Scholar 

  • Lu J, Guan P, Gu J, Yang X, Wang F, Qi M, Li T, Liu Y (2021) Exogenous DA‑6 improves the low night temperature tolerance of tomato through regulating cytokinin. Front Plant Sci. https://doi.org/10.3389/fpls.2020.599111

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukić N, Trifković T, Kojić D, Kukavica B (2021) Modulations of the antioxidants defence system in two maize hybrids during flooding stress. J Plant Res 134(2):237–248. https://doi.org/10.1007/s10265-021-01264-w

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Ann Bot 78(3):389–398. https://doi.org/10.1006/anbo.1996.0134

    Article  CAS  Google Scholar 

  • Meena Ì, Divyanshu K, Kumar S (2019) Regulation of L‑proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5(12):2952

    Article  Google Scholar 

  • Men S, Chen H, Chen S, Zheng S, Shen X, Wang C, Yang Z, Liu D (2020) Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Sci Rep 10(1):10201. https://doi.org/10.1038/s41598-020-67260-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutava RN, Prince SJK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT (2015) Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120. https://doi.org/10.1016/j.plaphy.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Lelarge-Trouverie C, Mhamdi A (2015) The metabolomics of oxidative stress. Phytochemistry 112:33–53

    Article  CAS  PubMed  Google Scholar 

  • Péret B, Li G, Zhao J, Band LR, Voß U, Postaire O, Luu D‑T, Da Ines O, Casimiro I, Lucas M (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14(10):991–998

    Article  PubMed  Google Scholar 

  • Raza A (2021) Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul 40(4):1368–1388

    Article  CAS  Google Scholar 

  • Rehman AU, Bashir F, Ayaydin F, Kóta Z, Páli T, Vass I (2021) Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiol Plant 172(1):7–18

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214(4):1403–1407

    Article  PubMed  Google Scholar 

  • Seymen M (2021) How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach? Sci Hortic (Amsterdam) 275:109713. https://doi.org/10.1016/j.scienta.2020.109713

    Article  CAS  Google Scholar 

  • Seymen M, Çiçek Arı B, Kal Ü, Issı N, Atakul Z, Yavuz D (2022) Mitigation effects of melatonin applied to cauliflower seedlings under different flooding durations. Gesunde Pflanz. https://doi.org/10.1007/s10343-022-00797-x

    Article  Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM (2020) Melatonin and Gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity. J Plant Growth Regul 39(4):1488–1502. https://doi.org/10.1007/s00344-020-10122-3

    Article  CAS  Google Scholar 

  • Tamang BG, Magliozzi JO, Maroof MAS, Fukao T (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ 37(10):2350–2365. https://doi.org/10.1111/pce.12277

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Long W, Zeng L, Ding X, Cheng Y, Zhang X, Zou X (2019) Melatonin-induced transcriptome variation of rapeseed seedlings under salt stress. Int J Mol Sci 20(21):5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 1807(8):968–976

    Article  CAS  PubMed  Google Scholar 

  • Thomas AL, Guerreiro SM, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96(7):1191–1198. https://doi.org/10.1093/aob/mci272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Bi W, Liu X, Sun L, Li J (2019a) Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.) under field conditions. Acta Physiol Plant 41(5):1–14

    Article  CAS  Google Scholar 

  • Tian L, Li J, Bi W, Zuo S, Li L, Li W, Sun L (2019b) Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agric Water Manag 218:250–258

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci 151(1):59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Voesenek LA, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206(1):57–73

    Article  CAS  PubMed  Google Scholar 

  • Voesenek L, Armstrong W, Bögemann G, Colmer T, McDonald M (1999) A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Funct Plant Biol 26(1):87–93

    Article  Google Scholar 

  • Wagner S, Steinbeck J, Fuchs P, Lichtenauer S, Elsässer M, Schippers JH, Nietzel T, Ruberti C, Van Aken O, Meyer AJ (2019) Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytol 224(4):1668–1684

    Article  CAS  PubMed  Google Scholar 

  • Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten H‑M, Riegler H, Hoefgen R, Perata P, Van Dongen JT, Licausi F (2014) Plant cysteine oxidases control the oxygen-dependent branch of the N‑end-rule pathway. Nat Commun 5(1):1–10

    Article  Google Scholar 

  • Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:718

    Article  PubMed  PubMed Central  Google Scholar 

  • Witham FH, Devlin RM, Blaydes DF (1971) Experiments in plant physiology. Van Nostrand Reinhold

    Google Scholar 

  • Yamauchi T, Colmer TD, Pedersen O, Nakazono M (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol 176(2):1118–1130

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang L, Ma C, Su M, Wang J, Zheng S, Zhang T (2022) Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Sci Hortic (Amsterdam) 297:110962. https://doi.org/10.1016/j.scienta.2022.110962

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Can.

Ethics declarations

Conflict of interest

H. Can declares that he has no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, H. Melatonin Application at Different Doses Changes the Physiological Responses in Favor of Cabbage Seedlings (Brassica oleracea var. capitata) Against Flooding Stress. Gesunde Pflanzen 75, 2733–2745 (2023). https://doi.org/10.1007/s10343-023-00873-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00873-w

Keywords

Navigation