Skip to main content
Log in

Role of Root Hydraulics in Plant Drought Tolerance

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Frequent and intense drought episodes impact agricultural productivity by challenging plant water status. The maintenance of hydraulic conductivity plays a key role in deciphering stress-induced impacts. Understanding drought-induced changes to root anatomical traits is important to improve plant drought adaptation. However, little is known about the root hydraulic strategy and xylem transport phenomena at the cellular and structural levels. Moreover, root architectural adaptations that systematically govern hydraulic safety as a function of water availability are largely unknown. A comprehensive understanding of root hydraulics and root architecture is needed to identify strategies to improve water uptake and modulate crucial root traits for crop improvement, especially in drought-prone areas. This review highlights the function of roots and the root–shoot junction as a hydraulic safety valve to quickly transport water in the radial and axial direction at cellular and tissue levels under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Mencuccini et al. (2019)

Fig. 2

Modified from Maurel and Nacry (2020)

Fig. 3

Modified from Zhou et al. (2020)

Fig. 4

Conceived from Burridge et al. (2022), Li et al. (2022), Rafie et al. (2022)

Fig. 5

Coceived from Zhang et al. (2020), Bloch et al. (2019), Ding et al. 2016, 2018), Ding et al. (2015), Cao et al. (2017), Bijanzadeh et al. (2018), Thorne et al. (2020), Song et al. (2019), Wagner et al. (2020), Anokye et al. (2021), Gao et al. (2017 (Color figure online))

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abate E, Azzarà M, Trifilò P (2021) When water availability is low, two mediterranean salvia species rely on root hydraulics. Plants 10(9):1888

    PubMed  PubMed Central  Google Scholar 

  • Abdalla M, Ahmed MA (2021) Arbuscular mycorrhiza symbiosis enhances water status and soil-plant hydraulic conductance under drought. Front Plant Sci. https://doi.org/10.3389/fpls.2021.722954

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdalla M, Ahmed MA, Cai G, Zarebanadkauki M, Carminati A (2022) Coupled effects of soil drying and salinity on soil–plant hydraulics. Plant Physiol. https://doi.org/10.1093/plphys/kiac229

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams HD, Zeppel MJ, Anderegg WR, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1(9):1285–1291

    PubMed  Google Scholar 

  • Agee E, He L, Bisht G, Couvreur V, Shahbaz P, Meunier F, Gough CM, Matheny AM, Bohrer G, Ivanov V (2021) Root lateral interactions drive water uptake patterns under water limitation. Adv Water Resour 151:103896

    Google Scholar 

  • Ahmed N, Zhu M, Li Q, Wang X, Wan J, Zhang Y (2021a) Glycine betaine-mediated root priming improves water stress tolerance in wheat (Triticum aestivum L.). Agriculture 11(11):1127

    CAS  Google Scholar 

  • Ahmed S, Kouser S, Asgher M, Gandhi SG (2021b) Plant aquaporins: a frontward to make crop plants drought resistant. Physiol Plant 172(1):1089–1105

    CAS  PubMed  Google Scholar 

  • Alahmad S, El Hassouni K, Bassi FM, Dinglasan E, Youssef C, Quarry G, Aksoy A, Mazzucotelli E, Juhász A, Able JA (2019) A major root architecture QTL responding to water limitation in durum wheat. Front Plant Sci 10:436

    PubMed  PubMed Central  Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59(3):469–484

    CAS  PubMed  Google Scholar 

  • Anderegg WR, Berry JA, Smith DD, Sperry JS, Anderegg LD, Field CB (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci USA 109(1):233–237

    CAS  PubMed  Google Scholar 

  • Anfodillo T, Olson ME (2021) Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority. Front Glob Change. https://doi.org/10.3389/ffgc.2021.704670

    Article  Google Scholar 

  • Anokye E, Lowor ST, Dogbatse JA, Padi FK (2021) Potassium application positively modulates physiological responses of cocoa seedlings to drought stress. Agronomy 11(3):563

    CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63(1):43–57

    CAS  PubMed  Google Scholar 

  • Azarbad H, Constant P, Giard-Laliberté C, Bainard LD, Yergeau E (2018) Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Soil Biol Biochem 126:228–236

    CAS  Google Scholar 

  • Bacher H, Sharaby Y, Walia H, Peleg Z (2022) Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress. J Exp Bot 73(5):1643–1654

    CAS  PubMed  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109(5):1009–1017

    PubMed  PubMed Central  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27(4):349–363

    PubMed  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66(2):306–317

    CAS  PubMed  Google Scholar 

  • Bijanzadeh E, Naderi R, Barati V (2018) Influence of silicon priming on seedling growth, root xylem anatomy and ion accumulation of barley (Hordeum vulgare L.) under drought stress. J Plant Process Funct 7(25):10

    Google Scholar 

  • Bloch D, Puli MR, Mosquna A, Yalovsky S (2019) Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials. Development 146(17):dev177097

    CAS  PubMed  Google Scholar 

  • Bogie NA, Bayala R, Diedhiou I, Conklin MH, Fogel ML, Dick RP, Ghezzehei TA (2018) Hydraulic redistribution by native sahelian shrubs: bioirrigation to resist in-season drought. Front Environ Sci 6:98

    Google Scholar 

  • Burridge JD, Grondin A, Vadez V (2022) Optimizing crop water use for drought and climate change adaptation requires a multi-scale approach. Front Plant Sci. https://doi.org/10.3389/fpls.2022.824720

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton AL, Williams M, Lynch JP, Brown KM (2012) RootScan: software for high-throughput analysis of root anatomical traits. Plant Soil 357(1):189–203

    CAS  Google Scholar 

  • Cai G, Carminati A, Abdalla M, Ahmed MA (2021) Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought. Plant Physiol 187(2):858–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao B-l, Wang L, Gao S, Xia J, Xu K (2017) Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. Protoplasma 254(6):2295–2304

    CAS  PubMed  Google Scholar 

  • Carminati A, Javaux M (2020) Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci 25(9):868–880

    CAS  PubMed  Google Scholar 

  • Carminati A, Schneider CL, Moradi AB, Zarebanadkouki M, Vetterlein D, Vogel HJ, Hildebrandt A, Weller U, Schüler L, Oswald SE (2011) How the rhizosphere may favor water availability to roots. Vadose Zone J 10(3):988–998

    Google Scholar 

  • Carminati A, Vetterlein D, Koebernick N, Blaser S, Weller U, Vogel H-J (2013) Do roots mind the gap? Plant Soil 367(1):651–661

    CAS  Google Scholar 

  • Carminati A, Passioura JB, Zarebanadkouki M, Ahmed MA, Ryan PR, Watt M, Delhaize E (2017) Root hairs enable high transpiration rates in drying soils. New Phytol 216(3):771–781

    CAS  PubMed  Google Scholar 

  • Carter AY, Ottman MJ, Curlango-Rivera G, Huskey DA, D’Agostini BA, Hawes MC (2019) Drought-tolerant barley: II. Root tip characteristics in emerging roots. Agronomy 9(5):220

    Google Scholar 

  • Chen P, Yan M, Li L, He J, Zhou S, Li Z, Niu C, Bao C, Zhi F, Ma F (2020) The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. Hortic Res 7(1):1–15

    Google Scholar 

  • Chimungu JG, Brown KM, Lynch JP (2014) Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol 166(4):1943–1955

    PubMed  PubMed Central  Google Scholar 

  • Chimungu JG, Maliro MF, Nalivata PC, Kanyama-Phiri G, Brown KM, Lynch JP (2015) Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). Field Crops Res 171:86–98

    Google Scholar 

  • Chitra-Tarak R, Xu C, Aguilar S, Anderson-Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD (2021) Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol 231(5):1798

    PubMed  PubMed Central  Google Scholar 

  • Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018) Triggers of tree mortality under drought. Nature 558(7711):531–539

    CAS  PubMed  Google Scholar 

  • Colombi T, Herrmann AM, Vallenback P, Keller T (2019) Cortical cell diameter is key to energy costs of root growth in wheat. Plant Physiol 180(4):2049–2060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    PubMed  PubMed Central  Google Scholar 

  • Cuneo IF, Barrios-Masias F, Knipfer T, Uretsky J, Reyes C, Lenain P, Brodersen CR, Walker MA, McElrone AJ (2021) Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function. New Phytol 229(1):272–283

    CAS  PubMed  Google Scholar 

  • D’Amico-Damião V, Barreto RF, de Oliveira Garcia LF, Porto JS, de Mello PR, Carvalho RF (2022) Cryptochrome 1a of tomato modulates nutritional deficiency responses. Sci Hortic 291:110577

    Google Scholar 

  • Dara A, Moradi BA, Vontobel P, Oswald SE (2015) Mapping compensating root water uptake in heterogeneous soil conditions via neutron radiography. Plant Soil 397(1–2):273–287

    CAS  Google Scholar 

  • Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V (2017) Poplar Ptab ZIP 1-like enhances lateral root formation and biomass growth under drought stress. Plant J 89(4):692–705

    CAS  PubMed  Google Scholar 

  • Dash M, Yordanov YS, Georgieva T, Wei H, Busov V (2018) Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2. 6-centered hierarchical network. PLoS ONE 13(12):e0208560

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza TC, de Castro EM, Magalhães PC, Lino LDO, Alves ET, de Albuquerque PEP (2013) Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiol Plant 35(11):3201–3211

    Google Scholar 

  • De-Bauw P, Vandamme E, Lupembe A, Mwakasege L, Senthilkumar K, Dramé KN, Merckx R (2019) Anatomical root responses of rice to combined phosphorus and water stress–relations to tolerance and breeding opportunities. Funct Plant Biol 46(11):1009–1022

    CAS  PubMed  Google Scholar 

  • Díaz A, Aguiar G, Pereira M, de Castro EM, Magalhães P, Pereira F (2018) Aerenchyma development in different root zones of maize genotypes under water limitation and different phosphorus nutrition. Embrapa Milho e Sorgo-Artigo Em Periódico Indexado. https://doi.org/10.1007/s10535-018-0773-8

    Article  Google Scholar 

  • Ding L, Gao C, Li Y, Li Y, Zhu Y, Xu G, Shen Q, Kaldenhoff R, Kai L, Guo S (2015) The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Sci 234:14–21

    CAS  PubMed  Google Scholar 

  • Ding L, Li Y, Wang Y, Gao L, Wang M, Chaumont F, Shen Q, Guo S (2016) Root ABA accumulation enhances rice seedling drought tolerance under ammonium supply: interaction with aquaporins. Front Plant Sci 7:1206

    PubMed  PubMed Central  Google Scholar 

  • Ding L, Lu Z, Gao L, Guo S, Shen Q (2018) Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front Plant Sci 9:1143

    PubMed  PubMed Central  Google Scholar 

  • Dinneny JR (2019) Developmental responses to water and salinity in root systems. Ann Rev Cell Dev Biol 35:239–257

    CAS  Google Scholar 

  • Drew MC, He C-J, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5(3):123–127

    CAS  PubMed  Google Scholar 

  • Duan H, Chaszar B, Lewis JD, Smith RA, Huxman TE, Tissue DT (2018) CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Tree Physiol 38(8):1138–1151

    CAS  PubMed  Google Scholar 

  • Dubey A, Saiyam D, Kumar A, Hashem A, Abd-Allah EF, Khan ML (2021) Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress. Int J Environ Res Public Health 18(3):931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Đurić MJ, Subotić AR, Prokić LT, Trifunović-Momčilov MM, Cingel AD, Dragićević MB, Simonović AD, Milošević SM (2021) Molecular characterization and expression of four aquaporin genes in Impatiens walleriana during drought stress and recovery. Plants 10(1):154

    PubMed  PubMed Central  Google Scholar 

  • Fàbregas N, Lozano-Elena F, Blasco-Escámez D, Tohge T, Martínez-Andújar C, Albacete A, Osorio S, Bustamante M, Riechmann JL, Nomura T (2018) Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 9(1):1–13

    Google Scholar 

  • Faustino LI, Moretti AP, Graciano C (2015) Fertilization with urea, ammonium and nitrate produce different effects on growth, hydraulic traits and drought tolerance in Pinus taeda seedlings. Tree Physiol 35(10):1062–1074

    CAS  PubMed  Google Scholar 

  • Feng Z-J, Xu S-C, Liu N, Zhang G-W, Hu Q-Z, Xu Z-S, Gong Y-M (2018) Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene 646:64–73

    CAS  PubMed  Google Scholar 

  • Fields JS, Owen JS, Scoggins HL (2017) The influence of substrate hydraulic conductivity on plant water status of an ornamental container crop grown in suboptimal substrate water potentials. HortSci 52(10):1419–1428

    Google Scholar 

  • Filipović V, Weninger T, Filipović L, Schwen A, Bristow KL, Zechmeister-Boltenstern S, Leitner S (2018) Inverse estimation of soil hydraulic properties and water repellency following artificially induced drought stress. J Hydrol Hydromech 66(2):170

    Google Scholar 

  • Fonta JE, Giri J, Vejchasarn P, Lynch JP, Brown KM (2022) Spatiotemporal responses of rice root architecture and anatomy to drought. Plant Soil. https://doi.org/10.1007/s11104-022-05527-w

    Article  Google Scholar 

  • Galindo-Castañeda T, Brown KM, Lynch JP (2018) Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant Cell Environ 41(7):1579–1592

    PubMed  Google Scholar 

  • Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67(15):4545–4557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Ding L, Li Y, Chen Y, Zhu J, Gu M, Li Y, Xu G, Shen Q, Guo S (2017) Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress. Funct Plant Biol 44(4):430–442

    CAS  PubMed  Google Scholar 

  • Grondin A, Mauleon R, Vadez V, Henry A (2016) Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Plant Cell Environ 39(2):347–365

    CAS  PubMed  Google Scholar 

  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16(3):277–286

    CAS  PubMed  Google Scholar 

  • Hazman MY, Kabil FF (2021) Maize root responses to drought stress depend on root class and axial position. J Plant Res 135:105–120

    PubMed  Google Scholar 

  • Henry A, Cal AJ, Batoto TC, Torres RO, Serraj R (2012) Root attributes affecting water uptake of rice (Oryza sativa) under drought. J Exp Bot 63(13):4751–4763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota I, Sakuratani T, Sato T, Higuchi H, Nawata E (2004) A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops. Agrofor Syst 60(2):181–187

    Google Scholar 

  • Hussain A, Tanveer R, Mustafa G, Farooq M, Amin I, Mansoor S (2020) Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics 112(1):263–275

    CAS  PubMed  Google Scholar 

  • Irizarry I, White J (2017) Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. J Appl Microbiol 122(4):1110–1120

    CAS  PubMed  Google Scholar 

  • Iwuala E, Odjegba V, Sharma V, Alam A (2020) Drought stress modulates expression of aquaporin gene and photosynthetic efficiency in Pennisetum glaucum (L.) R. Br. genotypes. Curr Plant Biol 21:100131

    Google Scholar 

  • Izumi Y, Okaichi S, Awala SK, Kawato Y, Watanabe Y, Yamane K, Iijima M (2018) Water supply from pearl millet by hydraulic lift can mitigate drought stress and improve productivity of rice by the close mixed planting. Plant Prod Sci 21(1):8–15

    CAS  Google Scholar 

  • Jang G, Choi YD (2018) Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid. Plant Signal Behav 13(3):e1451707

    PubMed  PubMed Central  Google Scholar 

  • Jaramillo RE, Nord EA, Chimungu JG, Brown KM, Lynch JP (2013) Root cortical burden influences drought tolerance in maize. Ann Bot 112(2):429–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Liu L, Li K, Xie Q, Wang Z, Zhao X, Li X (2014) PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. J Exp Bot 65(17):4863–4872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Pan X, Najeeb U, Tan DKY, Fahad S, Zahoor R, Luo H (2018) Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res. https://doi.org/10.1186/s40659-018-0198-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, Basit A, Hafeez MB, Irshad S, Bashir S, Bashir S, Maqbool MM, Saddiq MS, Hasnain Z, Aljuaid BS (2021) Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress. PLoS ONE 16(7):e0254452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim K, Lee SJ (2018) Hydraulic strategy of cactus root–stem junction for effective water transport. Front Plant Sci 9:799

    PubMed  PubMed Central  Google Scholar 

  • Klein SP, Schneider HM, Perkins AC, Brown KM, Lynch JP (2020) Multiple integrated root phenotypes are associated with improved drought tolerance. Plant Physiol 183(3):1011–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurowska MM, Wiecha K, Gajek K, Szarejko I (2019) Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley. PLoS ONE 14(12):e0226423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D-K, Yoon S, Kim YS, Kim J-K (2017) Rice OsERF71-mediated root modification affects shoot drought tolerance. Plant Signal Behav 12(1):e1268311

    PubMed  Google Scholar 

  • Li G-W, Peng Y-H, Yu X, Zhang M-H, Cai W-M, Sun W-N, Su W-A (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165(18):1879–1888

    CAS  PubMed  Google Scholar 

  • Li Z, Wang X, Liu Y, Zhou Y, Qian Z, Yu Z, Wu N, Bian Z (2022) Water Uptake and hormone modulation responses to nitrogen supply in Populus simonii under PEG-induced drought stress. Forests 13(6):907

    Google Scholar 

  • Lin Q, Wang S, Dao Y, Wang J, Wang K (2020) Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. J Exp Bot 71(14):4285–4297

    CAS  PubMed  Google Scholar 

  • Liu H, Yang L, Xin M, Ma F, Liu J (2019) Gene-wide analysis of aquaporin gene family in Malus domestica and heterologous expression of the gene MpPIP2; 1 confers drought and salinity tolerance in Arabidposis thaliana. Int J Mol Sci 20(15):3710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B (2012) Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63(5):2217–2230

    CAS  PubMed  Google Scholar 

  • Luo Y, Wang F, Huang Y, Zhou M, Gao J, Yan T, Sheng H, An L (2019) Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Front Microbiol 10:1221

    PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269(1):45–56

    CAS  Google Scholar 

  • Maurel C, Nacry P (2020) Root architecture and hydraulics converge for acclimation to changing water availability. Nat Plant 6(7):744–749

    Google Scholar 

  • Maurel C, Simonneau T, Sutka M (2010) The significance of roots as hydraulic rheostats. J Exp Bot 61(12):3191–3198

    CAS  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739

    PubMed  Google Scholar 

  • Mencuccini M, Manzoni S, Christoffersen B (2019) Modelling water fluxes in plants: from tissues to biosphere. New Phytol 222(3):1207–1222

    PubMed  Google Scholar 

  • Michniewicz M, Ho C-H, Enders TA, Floro E, Damodaran S, Gunther LK, Powers SK, Frick EM, Topp CN, Frommer WB (2019) TRANSPORTER OF IBA1 links auxin and cytokinin to influence root architecture. Dev Cell 50(5):599-609.e594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miniussi M, Del Terra L, Savi T, Pallavicini A, Nardini A (2015) Aquaporins in Coffea arabica L.: identification, expression, and impacts on plant water relations and hydraulics. Plant Physiol Biochem 95:92–102

    CAS  PubMed  Google Scholar 

  • Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS (2021) A manipulative interplay between positive and negative regulators of phytohormones: a way forward for improving drought tolerance in plants. Physiol Plant 172(2):1269–1290

    CAS  PubMed  Google Scholar 

  • Mukarram M, Choudhary S, Kurjak D, Petek A, Khan MMA (2021) Drought: sensing, signalling, effects and tolerance in higher plants. Physiol Plant 172(2):1291–1300

    CAS  PubMed  Google Scholar 

  • Naveed M, Brown L, Raffan A, George TS, Bengough AG, Roose T, Sinclair I, Koebernick N, Cooper L, Hackett CA (2017) Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur J Soil Sci 68(6):806–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Leung AK, Ng CW (2019) Unsaturated hydraulic properties of vegetated soil under single and mixed planting conditions. Géotechnique 69(6):554–559

    Google Scholar 

  • Ogura T, Goeschl C, Filiault D, Mirea M, Slovak R, Wolhrab B, Satbhai SB, Busch W (2019) Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell 178(2):400-412.e416

    CAS  PubMed  Google Scholar 

  • Patel KF, Fansler SJ, Campbell TP, Bond-Lamberty B, Smith AP, RoyChowdhury T, McCue LA, Varga T, Bailey VL (2021) Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Commun Earth Environ 2(1):1–9

    Google Scholar 

  • Paudel I, Cohen S, Shlizerman L, Jaiswal AK, Shaviv A, Sadka A (2017) Reductions in root hydraulic conductivity in response to clay soil and treated waste water are related to PIPs down-regulation in Citrus. Sci Rep 7(1):1–14

    CAS  Google Scholar 

  • Pawłowicz I, Rapacz M, Perlikowski D, Gondek K, Kosmala A (2017) Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet 58(4):421–435

    PubMed  PubMed Central  Google Scholar 

  • Postma JA, Lynch JP (2011) Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol 156(3):1190–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Postma JA, Dathe A, Lynch JP (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 166(2):590–602

    PubMed  PubMed Central  Google Scholar 

  • Quan W, Ding G (2017) Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinus massoniana Lamb.). Acta Physiol Plant 39(12):1–10

    CAS  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2019) Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water transport in maize plants under water deficit. Environ Exp Bot 167:103821

    CAS  Google Scholar 

  • Rafie M, Khoshgoftarmanesh A, Shariatmadari H, Darabi A (2022) Apoplastic and symplastic zinc concentration of intact leaves of field onion (Allisum cepa) as affected by foliar application of ZnSO4 and Zn-amino chelates. J Plant Nutr. https://doi.org/10.1080/01904167.2022.2044046

    Article  Google Scholar 

  • Ramachandran P, Wang G, Augstein F, de Vries J, Carlsbecker A (2018) Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145(3):dev159202

    PubMed  Google Scholar 

  • Ramireddy E, Hosseini SA, Eggert K, Gillandt S, Gnad H, von Wirén N, Schmülling T (2018) Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol 177(3):1078–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KS, Sekhar KM, Reddy AR (2017) Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity–photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.). Tree Physiol 37(7):926–937

    CAS  PubMed  Google Scholar 

  • Ren J, Yang X, Ma C, Wang Y, Zhao J, Kang L (2021) Meta-analysis of the effect of the overexpression of aquaporin family genes on the drought stress response. Plant Biotechnol Rep 15:139–150

    CAS  Google Scholar 

  • Rodríguez-Gamir J, Xue J, Clearwater MJ, Meason DF, Clinton PW, Domec JC (2019) Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. Plant Cell Environ 42(2):717–729

    PubMed  Google Scholar 

  • Rosales MA, Maurel C, Nacry P (2019) Abscisic acid coordinates dose-dependent developmental and hydraulic responses of roots to water deficit. Plant Physiol 180(4):2198–2211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211(1):225–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Lozano J, Aroca R (2017) Plant aquaporins and mycorrhizae: their regulation and involvement in plant physiology and performance. Plant aquaporins. Springer, Cham, pp 333–353

    Google Scholar 

  • Saengwilai P, Nord EA, Chimungu JG, Brown KM, Lynch JP (2014) Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol 166(2):726–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32(6):764–775

    CAS  PubMed  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8(4):e00764-e1717

    PubMed  PubMed Central  Google Scholar 

  • Schenk HJ, Jansen S, Hölttä T (2021) Positive pressure in xylem and its role in hydraulic function. New Phytol 230(1):27–45

    CAS  PubMed  Google Scholar 

  • Schneider HM, Lynch JP (2018) Functional implications of root cortical senescence for soil resource capture. Plant Soil 423(1):13–26

    CAS  Google Scholar 

  • Schneider HM, Postma JA, Wojciechowski T, Kuppe C, Lynch JP (2017a) Root cortical senescence improves growth under suboptimal availability of N, P, and K. Plant Physiol 174(4):2333–2347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider HM, Wojciechowski T, Postma JA, Brown KM, Lücke A, Zeisler V, Schreiber L, Lynch JP (2017b) Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley. Plant Cell Environ 40(8):1392–1408

    CAS  PubMed  Google Scholar 

  • Shekoofa A, Sinclair TR (2018) Aquaporin activity to improve crop drought tolerance. Cells 7(9):123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaraj S, Sharma Y, Chaudhary J, Rajora N, Sharma S, Thakral V, Ram H, Sonah H, Singla-Pareek SL, Sharma TR (2021) Dynamic role of aquaporin transport system under drought stress in plants. Environ Exp Bot 184:104367

    CAS  Google Scholar 

  • Shkolnik D, Nuriel R, Bonza MC, Costa A, Fromm H (2018) MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis. Proc Natl Acad Sci USA 115(31):8031–8036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Shweta S, Muthamilarasan M, Rani R, Prasad M (2019) Study on aquaporins of Setaria italica suggests the involvement of SiPIP3;1 and SiSIP1;1 in abiotic stress response. Funct Integr Genom 19(4):587–596

    CAS  Google Scholar 

  • Singh D, Mathimaran N, Boller T, Kahmen A (2020) Deep-rooted pigeon pea promotes the water relations and survival of shallow-rooted finger millet during drought—Despite strong competitive interactions at ambient water availability. PLoS ONE 15(2):e0228993

    PubMed  PubMed Central  Google Scholar 

  • Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42(7):686–693

    CAS  PubMed  Google Scholar 

  • Song J, Wang Y, Pan Y, Pang J, Zhang X, Fan J, Zhang Y (2019) The influence of nitrogen availability on anatomical and physiological responses of Populus alba× P. glandulosa to drought stress. BMC Plant Biol 19(1):1–12

    Google Scholar 

  • Song Y, Poorter L, Horsting A, Delzon S, Sterck F, Song Y (2021) Pit and tracheid anatomy explain the hydraulic safety-but not the hydraulic efficiency of 28 conifer species. J Exp Bot. https://doi.org/10.1093/jxb/erab449

    Article  PubMed  PubMed Central  Google Scholar 

  • Strock CF, Burridge JD, Niemiec MD, Brown KM, Lynch JP (2021) Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress. Plant Cell Environ 44(1):49–67

    CAS  PubMed  Google Scholar 

  • Tan TT, Demura T, Ohtani M (2019) Creating vessel elements in vitro: towards a comprehensive understanding of the molecular basis of xylem vessel element differentiation. Plant Biotechnol 36(1):1–6

    CAS  Google Scholar 

  • Thorne SJ, Hartley SE, Maathuis FJ (2020) Is silicon a panacea for alleviating drought and salt stress in crops? Front Plant Sci 11:1221

    PubMed  PubMed Central  Google Scholar 

  • Valifard M, Le Hir R, Müller J, Scheuring D, Neuhaus HE, Pommerrenig B (2021) Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance. Plant Physiol 187(4):2716–2730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vereecken H, Huisman J-A, Hendricks Franssen H-J, Brüggemann N, Bogena HR, Kollet S, Javaux M, van der Kruk J, Vanderborght J (2015) Soil hydrology: recent methodological advances, challenges, and perspectives. Water Resour Res 51(4):2616–2633

    Google Scholar 

  • Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A, Raddadi N, Borin S, Sorlini C, Zocchi G (2019) Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol 21(9):3212–3228

    CAS  Google Scholar 

  • Wagner Y, Brumfeld V, Gruenzweig J (2020) The effect of soil potassium and carbohydrates on xylem conductivity and embolism in an evergreen angiosperm tree and a gymnosperm tree before and after drought. bioRxiv. https://doi.org/10.1101/2020.11.11.379156

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasaya A, Zhang X, Fang Q, Yan Z (2018) Root phenotyping for drought tolerance: a review. Agronomy 8(11):241

    Google Scholar 

  • Wasson AP, Richards R, Chatrath R, Misra S, Prasad SS, Rebetzke G, Kirkegaard J, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63(9):3485–3498

    CAS  PubMed  Google Scholar 

  • Yadav BK, Mathur S (2008) Modeling soil water uptake by plants using nonlinear dynamic root density distribution function. J Irrig Drain Eng 134(4):430–436

    Google Scholar 

  • Yamauchi T, Pedersen O, Nakazono M, Tsutsumi N (2021) Key root traits of Poaceae for adaptation to soil water gradients. New Phytol 229(6):3133–3140

    CAS  PubMed  Google Scholar 

  • Yang X, Li Y, Ren B, Ding L, Gao C, Shen Q, Guo S (2012) Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant Cell Physiol 53(3):495–504

    CAS  PubMed  Google Scholar 

  • Yang A, Akhtar SS, Li L, Fu Q, Li Q, Naeem MA, He X, Zhang Z, Jacobsen S-E (2020a) Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy 10(6):912

    CAS  Google Scholar 

  • Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Chen Y, Feng K, Wang B, Qi J (2020b) SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol 246:153142

    PubMed  Google Scholar 

  • Yıldırım K, Yağcı A, Sucu S, Tunç S (2018) Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol Biochem 127:256–268

    PubMed  Google Scholar 

  • Zhan A, Schneider H, Lynch JP (2015) Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol 168(4):1603–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Dell B, Ma W, Vergauwen R, Zhang X, Oteri T, Foreman A, Laird D, Van den Ende W (2016) Contributions of root WSC during grain filling in wheat under drought. Front Plant Sci 7:904

    PubMed  PubMed Central  Google Scholar 

  • Zhang D-y, Kumar M, Xu L, Wan Q, Huang Y-h, Xu Z-L, He X-L, Ma J-B, Pandey GK, Shao H-B (2017) Genome-wide identification of major intrinsic proteins in Glycine soja and characterization of GmTIP2; 1 function under salt and water stress. Sci Rep 7(1):1–12

    Google Scholar 

  • Zhang Y, Wang X, Luo Y, Zhang L, Yao Y, Han L, Chen Z, Wang L, Li Y (2020) OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. Crop J 8(3):480–491

    Google Scholar 

  • Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen J, Liu C, Yin W (2020) Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. New Phytol 227(2):407–426

    CAS  PubMed  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33(5):740–749

    PubMed  Google Scholar 

  • Zupin M, Sedlar A, Kidrič M, Meglič V (2017) Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress. J Plant Res 130(4):735–745

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support received from Sultan Qaboos University through His Majesty Trust Fund (SR/AGR/CROP/19/01) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MF conceived the idea and developed the outline. MA and NZ prepared the first draft. SMA, NZ, MHK, BAL, KN, TA, KHM and MF finalized the manuscript.

Corresponding author

Correspondence to Muhammad Farooq.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Sudhir K. Sopory.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi Alagoz, S., Zahra, N., Hajiaghaei Kamrani, M. et al. Role of Root Hydraulics in Plant Drought Tolerance. J Plant Growth Regul 42, 6228–6243 (2023). https://doi.org/10.1007/s00344-022-10807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10807-x

Keywords

Navigation