Skip to main content

Advertisement

Log in

Role of Polyamines in Molecular Regulation and Cross-Talks Against Drought Tolerance in Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Global agricultural demand and the impact of fluctuating climatic conditions including global warming have catastrophically limited crop productivity and immensely outstretched the market value of agricultural products leading to acute inflation. The effect of desiccation or drought stress in plants is manifested at three levels viz. morphological, biochemical, and molecular and plants possess their own molecular and signaling arsenal to combat or ameliorate various stresses. For decades, stress-tolerant cultivars have been investigated and modulation of polyamine (PA) signaling was found to play a major role in attenuating environmental stresses including drought as major abiotic stress. PA metabolism pathways with their ability to crosstalk with both primary and secondary metabolic pathways have been correlated with several other responses such as seed germination, plant growth, development, defense, hormonal regulation, stress tolerance, and crop yield. Recent transcriptomic and metabolomic approaches have expanded the knowledge on the regulation of stress-induced biochemical, molecular, and physiological alterations. To fully comprehend the intricate biochemical network of plant stress physiology, it is necessary to identify exact responses against specific stress stimuli, interpret concurrent epigenetic alterations, and use molecular switching. The present review encompasses recent updates on drought tolerance mechanisms mediated by diverse polyamines playing significant roles in metabolic regulation, oxidative stress management, and systematic stress-reversal signaling. Besides, the drought stress-reversal role of polyamines and their cross-talks with other signaling molecules have also been documented. Gene, enzyme, and transcription factor (TF) functional features were retrieved from the published papers involving transgenic or mutant plants with over-expression or loss-of-function investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamipour N, Khosh-Khui M, Salehi H, Razi H, Karami A, Moghadam A (2020) Role of genes and metabolites involved in polyamines synthesis pathways and nitric oxide synthase in stomatal closure on Rosa damascena Mill. under drought-stress. Plant Physiol Biochem 148:53–61

    CAS  PubMed  Google Scholar 

  • Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006a) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006b) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    PubMed  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T (2010a) Putrescine accumulation confers drought-tolerance in transgenic Arabidopsis plants over-expressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010b) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  Google Scholar 

  • Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought-stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250

    PubMed Central  PubMed  Google Scholar 

  • Alcázar R, Bueno M, Tiburcio AF (2020) Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells 9(11):2373. https://doi.org/10.3390/cells9112373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amri E (2010) Shahsavar AR (2010) Response of lime seedlings (Citrus aurantifolia L.) to exogenous spermidine treatments under drought-stress. Aust J Basic Appl Sci 4:4483–4489

    Google Scholar 

  • Amri E, Mohammadi MJ (2012) Effects of timing of drought-stress on pomegranate seedlings (Punica granatum L. cv Atabaki) to exogenous spermidine and putrescine polyamines. Afr J Microbiol Res 6:5294–5300

    CAS  Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    CAS  PubMed  Google Scholar 

  • Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA (2014) Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. Front Plant Sci 5:1–10

    Google Scholar 

  • Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564

    CAS  PubMed  Google Scholar 

  • Bae H, Kim SH, Kim MS, Sicher RC, Lary D, Strem MD, Natarajan S, Bailey BA (2008) The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Biochem 46:174–188

    CAS  PubMed  Google Scholar 

  • Bano C, Amist N, Singh NB (2020) Role of polyamines in plants abiotic stress tolerance: advances and future prospects. In: Tripathi DK, Chauhan DK, Prasad SM, Ramawat N (eds) Plant life under changing environment. Elsevier, Amsterdam, pp 481–496

    Google Scholar 

  • Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. Plant Cell 24:1202–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought-stress. Proc Nat Acad Sci USA 26:9909–9914

    Google Scholar 

  • Chen J, Shang YT, Wang WH, Chen XY, He EM, Zheng HL, Shangguan Z (2016a) Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought-tolerance in Spinacia oleracea seedlings. Front Plant Sci 7:1173

    PubMed Central  PubMed  Google Scholar 

  • Chen B, Ma J, Xu Z, Wang X (2016b) Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination. J Integr Plant Biol 58:859–869

    CAS  PubMed  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01945

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng W-H, Endo A, Zhou L (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14(2723):2743

    Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. https://doi.org/10.1146/annurev-arplant-042809-112122

    Article  PubMed  Google Scholar 

  • Dey A, Hazra AK, Nongdam P, Nandy S, Tikendra L, Mukherjee A, Banerjee S, Mukherjee S, Pandey DK (2019) Enhanced bacoside content in polyamine treated in-vitro raised Bacopa monnieri (L.) Wettst. South Afr J Bot 123:259–269. https://doi.org/10.1016/j.sajb.2019.03.012

    Article  CAS  Google Scholar 

  • Dey A, Nongdam P, Nandy S, Mukherjee S, Mukherjee A, Tikendra L, Hazra AK, Pandey DK (2020) Polyamine elicited aristolochic acid production in in vitro clonally fidel Aristolochia indica L.: An ISSR and RAPD markers and HPTLC based study. South Afr J Bot. https://doi.org/10.1016/j.sajb.2020.06.018

    Article  Google Scholar 

  • Dias LLC, Santa-Catarina C, Silveira V, Pieruzzi FP, Floh EIS (2009) Polyamines, amino acids, IAA and ABA contents during Ocotea catharinensis seed germination. Seed Sci Technol 37:42–51

    Google Scholar 

  • Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Google Scholar 

  • Ebeed HT, Hassan NM, Aljarani AM (2017) Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol Biochem 118:438–448

    CAS  PubMed  Google Scholar 

  • Elsayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffi nose family oligosaccharides in plants: protection against abiotic stress. Plant Biol 16:1–8

    CAS  PubMed  Google Scholar 

  • Fan HF, Du CX, Guo SR (2013) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot 86:52–59

    CAS  Google Scholar 

  • Farhangi-Abriz S, Faegi-Analou R, Nikpour-Rashidabad N (2017) Polyamines, affected the nitrogen partioning, protein accumulation and amino acid composition of mung bean under water stress. J Crop Sci Biotechnol 20:279–285

    Google Scholar 

  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A (2014) 24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica 52:464–474

    CAS  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought-tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945

    CAS  Google Scholar 

  • Farooq M, Wahid A, Lee DJ, Cheema SA, Aziz T (2010) Drought-stress: comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agro Crop Sci 196:336–345

    CAS  Google Scholar 

  • Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62:1155–1168

    CAS  PubMed  Google Scholar 

  • Fu XZ, Xing F, Wang NQ, Peng LZ, Chun CP, Cao L, Ling LL, Jiang CL (2014) Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought-stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnolog Biotechnol Equip 28:192–198

    CAS  Google Scholar 

  • Ghassemi S, Farhangi-Abriz S, Faegi-Analou R, Ghorbanpour M, Lajayer BA (2018) Monitoring cell energy, physiological functions and grain yield in field-grown mung bean exposed to exogenously applied polyamines under drought-stress. J Soil Sci Plant Nutri 18:1108–1125

    CAS  Google Scholar 

  • Gupta B, Dey A, Gupta K (2013a) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    CAS  Google Scholar 

  • Gupta B, Dey A, Gupta K (2013b) Polyamines and their role in plant osmotic stress tolerance. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley, KGaA, Weinheim, pp 1053–1071

    Google Scholar 

  • Hou Z, Liu G, Hou L, Wang L, Xin L (2013) Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene-induced stomatal closure in Arabidopsis thaliana. J Integr Agric 12:251–262

    Google Scholar 

  • Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K (2015) Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of× Triticosecale Wittm. PLoS ONE 10:e0135002

    PubMed Central  PubMed  Google Scholar 

  • Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-López A, Rubio-Cabetas MJ, Kanellis AK (2009) Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought-stresses. J Exp Bot 60:1859–1871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamiab F, Tavassolian I, Hosseinifarahi M (2020) Biologia futura: the role of polyamine in plant science. Biol Futur 71:183–194

    CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    CAS  PubMed  Google Scholar 

  • Khan HA, Ziaf K, Amjad M, Iqbal Q (2012) Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean J Agric Res 72:429–433

    Google Scholar 

  • Kim DW, Watanabe K, Murayama C, Izawa S, Niitsu M, Michael AJ, Berberich T, Kusano T (2014) Polyamine oxidases regulates Arabidopsis growth through thermospermine oxidase activity. Plant Physiol 165:1575–1590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konstantinos PA, Imene T, Panagiotis MN, Roubelakis-Angelakis KA (2010) ABA-dependent amine oxidases-derived H2O2 affects stomata conductance. Plant Signal Behav 5:1153–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotakis C, Theodoropoulou E, Tassis K, Oustamanolakis C, Ioannidis NE, Kotzabasis K (2014) Putrescine, a fast-acting switch for tolerance against osmotic stress. J Plant Physiol 171:48–51

    CAS  PubMed  Google Scholar 

  • Kuppusamy K, Walcher C, Nemhauser J (2009) Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69:375–381

    CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J22:2623–2633

    Google Scholar 

  • Li Z, Zhou H, Peng Y, Zhang X, Ma X, Huang L, Yan Y (2015a) Exogenously applied spermidine improves drought-tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Reg 76:71–82

    CAS  Google Scholar 

  • Li Z, Jing W, Peng Y, Zhang XQ, Ma X, Huang LK, Yan YH (2015b) Spermine alleviates drought-stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. PLoS ONE 10:e0120708

    PubMed Central  PubMed  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Peng Y, Merewitz E, Ma X, Huang L, Yan Y (2016) The alterations of endogenous polyamines and phytohormones induced by exogenous application of spermidine regulate antioxidant metabolism, metallothionein and relevant genes conferring drought-tolerance in white clover. Environ Exp Bot 124:22–38

    CAS  Google Scholar 

  • Li L, Gu W, Li C, Li W, Li C, Li J, Wei S (2018) Exogenous spermidine improves drought-tolerance in maize by enhancing the antioxidant defence system and regulating endogenous polyamine metabolism. Crop Pasture Sci 69:1076–1091

    CAS  Google Scholar 

  • Lin PPC, Egli DB, Li GM, Meckel L (1984) Polyamine titer in the embryonic axis and cotyledons of Glycine max (L.) during seed growth and maturation. Plant Physiol 103:273–280

    Google Scholar 

  • Liu C, Zuo Z, Hu J (2010) Effects of Exogenous Polyamines on Growth and Drought Resistance of Apple Seedlings. J Northwest for Univ 2010:1

    Google Scholar 

  • Liu T, Dobashi H, Kim DW, Sagor GH, Niitsu M, Berberich T, Kusano T (2014) Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. Physiol Mol Biol Plants 20:151–159

    PubMed Central  PubMed  Google Scholar 

  • Liu Y, Liang H, Lv X, Liu D, Wen X, Liao Y (2016) Effect of polyamines on the grain filling of wheat under drought-stress. Plant Physiol Biochem 100:113–129

    CAS  PubMed  Google Scholar 

  • Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Lu H, Xie Y, Guo T (2016) Alleviation of drought-stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS ONE 11:e0163082

    PubMed Central  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought-stresses: an overview. Arc Biochem Biophys 444:139–158

    CAS  Google Scholar 

  • Marco F, Alcázar R, Tiburcio AF, Carrasco P (2011) Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. Omics J Int Biol 15:775–781

    CAS  Google Scholar 

  • Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acid 38:405–413

    CAS  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2009) Transgenic manipulation of a single polyamine in poplar cells aVects the accumulation of all amino acids. Amino Acid 38:1117–1129

    Google Scholar 

  • Mohammadi H, Ghorbanpour M, Brestic M (2018) Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought-stress conditions. Indust Crop Prod 122:119–132

    CAS  Google Scholar 

  • Momtaz OA, Hussein EM, Fahmy EM, Ahmed SE (2010) Expression of S-adenosyl methionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90. GM Crop 1:257–266

    Google Scholar 

  • Montilla-Bascón G, Rubiales D, Hebelstrup KH, Mandon J, Harren FJ, Cristescu SM, Mur LA, Prats E (2017) Reduced nitric oxide levels during drought-stress promote drought-tolerance in barley and is associated with elevated polyamine biosynthesis. Sci Rep 7:1–5

    Google Scholar 

  • Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015

    CAS  PubMed  Google Scholar 

  • Mostafaei E, Zehtab-Salmasi S, Salehi-Lisar Y, Ghassemi-Golezani K (2018) Changes in photosynthetic pigments, osmolytes and antioxidants of Indian Mustard by drought and exogenous polyamines. Acta Biol Hungari 69:313–324

    CAS  Google Scholar 

  • Mustafavi S, Shekari F, Maleki H (2016) Influence of exogenous polyamines on antioxidant defence and essential oil production in valerian (Valeriana officinalis L.) plants under drought-stress. Acta Agric Slov 107:81–91

    CAS  Google Scholar 

  • Mustafavi SH, Badi HN, Sękara A, Mehrafarin A, Janda T, Ghorbanpour M, Rafiee H (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40:102

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Mahmud JA, Suzuki T, Fujita M (2017) Insights into spermine-induced combined high temperature and drought-tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma 254:445–460

    CAS  PubMed  Google Scholar 

  • Nandy S, Das T, Tudu CK, Mishra T, Ghorai M, Gadekar VS, Anand U, Kumar M, Behl T, Shaikh NK, Jha NK (2022) Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Appl Microbiol Biotechnol 106:905–929

    CAS  PubMed  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365

    CAS  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pal M, Szalai G, Gondor OK, Janda T (2021) Unfinished story of polyamines: role of conjugation, transport and light-related regulation in the polyamine metabolism in plants. Plant Sci 308:110923

    CAS  PubMed  Google Scholar 

  • Pandey V, Shukla A (2015) Acclimation and tolerance strategies of rice under drought-stress. Rice Sci 22:147–161

    Google Scholar 

  • Peng D, Wang X, Li Z, Zhang Y, Peng Y, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y (2016) NO is involved in spermidine-induced drought-tolerance in white clover via activation of antioxidant enzymes and genes. Protoplasma 253:1243–1254

    CAS  PubMed  Google Scholar 

  • Peremarti A, Bassie L, Christou P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought-tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase. Plant Mol Boil. 70(3):253–264

    CAS  Google Scholar 

  • Planas-Portell J, Gallart M, Tiburcio AF, Altabella T (2013) Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol. https://doi.org/10.1186/1471-2229-13-109

    Article  PubMed Central  PubMed  Google Scholar 

  • Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5:154

    PubMed Central  PubMed  Google Scholar 

  • Rangan P, Subramani R, Kumar R, Singh AK, Singh R (2014) Recent advances in polyamine metabolism and abiotic stress tolerance. BioMed Res Int. https://doi.org/10.1155/2014/239621

    Article  PubMed Central  PubMed  Google Scholar 

  • Sagor GH, Zhang S, Kojima S, Simm S, Berberich T, Kusano T (2016) Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought-tolerance by reducing reactive oxygen species production and increasing defense gene expression. Front Plant Sci 7:214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santanen A (2000) Polyamine metabolism during development of somatic and zygotic embryos of Picea abies (Norway spruce).

  • Saruhan N, Turgut-Terzi R, Kadioglu A (2006) The effects of exogenous polyamines on some biochemical changes during drought-stress in Ctenanthe setosa (Rosc.) Eichler. Acta Biol Hungari 57:221–229

    CAS  Google Scholar 

  • Schweikert C, Liszkay A, Schopfer P (2000) Scission of polysaccharides by peroxidase-generated hydroxyl radicals. Phytochemistry 53:565–570

    CAS  PubMed  Google Scholar 

  • Seifi HS, Shelp BJ (2019) Spermine differentially refines plant defense responses against biotic and abiotic stresses. Front Plant Sci 10:117

    PubMed Central  PubMed  Google Scholar 

  • Sen K, Choudhuri MM, Ghosh B (1981) Changes in polyamine contents during development and germination of rice seeds. Phytochemistry 20:631–633

    CAS  Google Scholar 

  • She XP, Song XG, He JM (2004) Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba. Acta Bot Sin 46:1292–1300

    CAS  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193:130–135

    PubMed  Google Scholar 

  • Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–922

    CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Chan Z (2013) Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodondactylon) response to salt and drought-stresses. J Prot Res 12:4951–4964

    CAS  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56:114–121

    CAS  PubMed  Google Scholar 

  • Sun P, Zhu X, Huang X, Liu JH (2014) Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiol Biochem 78:71–79

    CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Li C, Charles TM (2007) Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep 26:115–124

    CAS  PubMed  Google Scholar 

  • Tassoni A, Franceschetti M, Bagni N (2008) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46:607–613

    CAS  PubMed  Google Scholar 

  • Terzi R, Kalaycıoglu E, Demiralay M, Saglam A, Kadioglu A (2015) Exogenous ascorbic acid mitigates accumulation of abscisic acid, proline and polyamine under osmotic stress in maize leaves. Acta Physiol Plant 37:43

    Google Scholar 

  • Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acid 42:411–426

    CAS  Google Scholar 

  • Tavladoraki P, Cona A, Angelini R (2016) Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci 7:824

    PubMed Central  PubMed  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–8

    CAS  PubMed  Google Scholar 

  • Torabian S, Shakiba MR, Nasab ADM, Toorchi M (2018a) Leaf gas exchange and grain yield of common bean exposed to spermidine under water stress. Photosynthetica 56:1387–1397

    CAS  Google Scholar 

  • Torabian S, Shakiba MR, Mohammadi Nasab AD, Toorchi M (2018b) Exogenous spermidine affected leaf characteristics and growth of common bean under water deficit conditions. Commun Soil Sci Plan 49:1289–1301

    CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    CAS  PubMed  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought-tolerance in plants. Curr Opin Plant Biol 9:189–195

    CAS  PubMed  Google Scholar 

  • Villanueva VR, Huang H (1993) Effect of polyamine inhibition on pea seed-germination. J Plant Physiol 141:336–340

    CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    CAS  Google Scholar 

  • Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH (2011) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914

    CAS  PubMed  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Nat Acad Sci USA 112:613–618

    CAS  PubMed  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Trans Res 17:251–263

    CAS  Google Scholar 

  • Wencai Z, Hui L, Huijie Z, Yanlai H, Jinfang T (2009) Effects of Exogenous Polyamine Osmotica Regulation in Wheat Seedling Leaves under Drought-stress. Chi Agric Sci Bullet 2009:9

    Google Scholar 

  • Wi SJ, Park KY (2002) Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol Cells 13:209–220

    CAS  PubMed  Google Scholar 

  • Wi SJ, Kim SJ, Kim WT, Park KY (2014) Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. Planta 239:979–988

    CAS  PubMed  Google Scholar 

  • Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, Von Caemmerer S (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58:299–317

    CAS  PubMed  Google Scholar 

  • Wimalasekera R, Villar C, Begum T, Scherer GF (2011) Copper amine oxidase1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid-and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678

    CAS  PubMed  Google Scholar 

  • Wu J, Shu S, Li C, Sun J, Guo S (2018) Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem 128:152–162

    CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought-stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine- induced nitric oxide synthesis in plants? Trends Plant Sci 11:522–524

    CAS  PubMed  Google Scholar 

  • Yang L, Hong XU, Xiao-xia W, Yun-cheng L (2016) Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J Integr Agric 15:2759–2774

    Google Scholar 

  • Yong B, Xie H, Li Z, Li YP, Zhang Y, Nie G, Zhang XQ, Ma X, Huang LK, Yan YH, Peng Y (2017) Exogenous application of GABA improves PEG-induced drought-tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover. Front Physiol 8:1107

    PubMed Central  PubMed  Google Scholar 

  • Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio AF, Alcázar R (2017) Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant Cell Environ 40:527–542

    CAS  PubMed  Google Scholar 

  • Zhang CM, Zou ZR, Huang Z, Zhang ZX (2010) Effects of exogenous spermidine on photosynthesis of tomato seedlings under drought stress. Agric Res Arid Area 3:182–187

    Google Scholar 

  • Zhang F, Hu W, Su G (2011) The roles of hydrogen peroxide generated by polyamine degradation in lettuce (Lactuca sativa L.) seed germination. Nat Sci 27:84–89

    Google Scholar 

  • Zhang Y, Chen B, Xu Z, Shi Z, Chen S, Huang X et al (2014) Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J Exp Bot 65:3189–3200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Li Z, Li YP, Zhang XQ, Ma X, Huang LK et al (2018a) Chitosan and spermine enhance drought resistance in white clover, associated with changes in endogenous phytohormones and polyamines, and antioxidant metabolism. Funct Plant Biol 45:1205–1222

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li Z, Li YP, Zhang XQ, Ma X, Huang LK, Yan YH, Peng Y (2018b) Chitosan and spermine enhance drought resistance in white clover, associated with changes in endogenous phytohormones and polyamines, and antioxidant metabolism. Funct Plant Biol 45:1205–1222

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author thankfully acknowledges the research grant provided by DST-INSPIRE (Fellowship sanction letter no. and date: C/4588/IFD/2014-15 and 25.11.2014). The corresponding author thankfully acknowledges the “Faculty Research and Professional Development Fund” (FRPDF) for financial assistance from Presidency University.

Author information

Authors and Affiliations

Authors

Contributions

SN, Literature survey, primary draft; SM, Literature survey, primary draft; SKG, Revision of draft, preparation of tables; UA, MG, Preparation of tables and figures, addressed reviewers’ comments; AM, Md. HR: Literature survey, overall monitoring; PR, Literature survey, overall monitoring; DR, Literature survey, overall monitoring; MKL, RKT, PN, MSS, Preparation of tables and figures; DKP, Overall monitoring; NKJ, SKJ, Primary draft, preparation of tables and figures, MK, R, Revision and finalization, JSR, Conceptualization, and finalization. AD, Conceptualization, overall monitoring, revision of the draft and finalization; All authors read and approved the final version and contributed substantially to the manuscript.

Corresponding author

Correspondence to Abhijit Dey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Naeem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, S., Mandal, S., Gupta, S.K. et al. Role of Polyamines in Molecular Regulation and Cross-Talks Against Drought Tolerance in Plants. J Plant Growth Regul 42, 4901–4917 (2023). https://doi.org/10.1007/s00344-022-10802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10802-2

Keywords

Navigation