Skip to main content
Log in

Genome-Wide Analysis of the Growth-Regulating Factor Family in Medicago truncatula

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Growth-regulating factor (GRF) exerts important functions related to plant development and stress response. However, in Medicago truncatula, the GRF family has not been comprehensively analyzed at the genome level. This study identified eight MtGRF genes (containing both QLQ and WRC domains) in the M. truncatula genome, and no duplicate events occurred between these genes. Gene expression analysis showed that MtGRFs exhibited the highest expression in shoot apical meristems (SAM) followed by seeds, flowers, roots, etc. MtGRF2-6 and MtGRF8 were induced by GA, IAA, and ABA, and MtGRF2 and MtGRF5 also responded to MeJA. Additionally, eight, five, and seven MtGRF genes were differentially expressed under drought, salt, and cold stress, respectively. Five MtGRF genes (MtGRF1, 2, 6, 7, and 8) responded to all three types of stresses, especially MtGRF8, the expression of which was inhibited under drought, salt, and cold stress. These results indicated that MtGRF8 may be a negative regulator of the stress response. Degradome analysis showed that all eight MtGRFs were the target genes of Mt-miR396, and MtGRF4 may be jointly regulated by Mt-miR396 and other microRNAs. These results will contribute to the understanding of the GRF family in M. truncatula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  CAS  PubMed  Google Scholar 

  • Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74:920–934

    Article  CAS  PubMed  Google Scholar 

  • Bing J, Xiao E, Li C, Wang Z (2019) Genome-wide identification and expression analysis of gowth-regulating factor family genes in sunflower (Helianthus annuus L.)

  • Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P (2013) Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell 25:3570–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Yang Y, Luo X, Zhou W, Dai Y, Zheng C, Liu W, Yang W, Shu K (2019) Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol 19:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi D, Kim JH, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol 45:897–904

    Article  CAS  PubMed  Google Scholar 

  • Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez RE, Palatnik JF (2014) Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J 79:413–426

    Article  CAS  PubMed  Google Scholar 

  • Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156:1990–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonini LS, Lazzarotto F, Barros PM, Cabreira-Cagliari C, Martins MA, Saibo NJ, Turchetto-Zolet AC, Margis-Pinheiro M (2020) Molecular evolution and diversification of the GRF transcription factor family. Genet Mol Biol. https://doi.org/10.1590/1678-4685-gmb-2020-0080

    Article  PubMed  PubMed Central  Google Scholar 

  • Hewezi T, Maier TR, Nettleton D, Baum TJ (2012) The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159:321–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43(1):68–78. https://doi.org/10.1111/j.1365-313X.2005.02429.x

    Article  CAS  PubMed  Google Scholar 

  • Huang W, He Y, Yang L, Lu C, Zhu Y, Sun C, Ma D, Yin J (2021) Genome-wide analysis of growth-regulating factors (GRFs) in Triticum aestivum. PeerJ 9:e10701

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Khatun K, Robin AHK, Park JI, Nath UK, Kim CK, Lim KB, Nou IS, Chung MY (2017) Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones. Int J Mol Sci 18:1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101:13374–13379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Tsukaya H (2015) Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J Exp Bot 66:6093–6107

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K (2012) Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 24:3393–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Li AL, Wen Z, Yang K, Wen XP (2019) Conserved miR396b-GRF regulation is involved in abiotic stress responses in Pitaya (Hylocereus polyrhizus). J Mol Sci 20:2501

    Article  CAS  Google Scholar 

  • Liebsch D, Palatnik JF (2020) MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol 53:31–42

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136:223–236

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Rice JH, Chen N, Baum TJ, Hewezi T (2014) Synchronization of developmental processes and defense signaling by growth regulating transcription factors. PLoS ONE 9:e98477

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Guo LX, Jin LF, Liu YZ (2016) Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development. Mol Biol Rep 43:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Meng Y, Zeng J, Luo Y, Feng Z, Bian L, Gao S (2020) Coordination between GROWTH-REGULATING FACTOR1 and GRF-INTERACTING FACTOR1 plays a key role in regulating leaf growth in rice. BMC Plant Biol 20:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JQ, Jian HJ, Yang B, Lu K, Zhang AX, Liu P, Li JN (2017) Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.). Gene 620:36–45

    Article  CAS  PubMed  Google Scholar 

  • Noon JB, Hewezi T, Baum TJ (2019) Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot 70:1653–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B (2015) Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8:998–1010

    Article  CAS  PubMed  Google Scholar 

  • Pegler JL, Oultram JMJ, Grof CPL, Eamens AL (2020) Molecular manipulation of the miR399/PHO2 expression module alters the salt stress response of Arabidopsis thaliana. Plants 10:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Piya S, Liu J, Burch-Smith T, Baum TJ, Hewezi T (2020) A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism. J Exp Bot 71:1402–1417

    Article  CAS  PubMed  Google Scholar 

  • Shang S, Wu C, Huang C, Tie W, Yan Y, Ding Z, Xia Z, Wang W, Peng M, Tian L, Hu W (2018) Genome-wide analysis of the GRF family reveals their involvement in abiotic stress response in cassava. Genes (basel) 9:110

    Article  PubMed  Google Scholar 

  • Shi Y, Liu H, Gao Y, Wang Y, Wu M, Xiang Y (2019) Genome-wide identification of growth-regulating factors in moso bamboo (Phyllostachys edulis): in silico and experimental analyses. PeerJ 7:e7510

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JB, Wang YX, Li HB, Li BW, Zhou ZS, Gao S, Yang ZM (2015) The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Funct Integr Genomics 15:495–507

    Article  CAS  PubMed  Google Scholar 

  • Song J, Mo X, Yang H, Yue L, Song J, Mo B (2017) The U-box family genes in Medicago truncatula: key elements in response to salt, cold, and drought stresses. PLoS ONE 12:e0182402

    Article  PubMed  PubMed Central  Google Scholar 

  • Szczygieł-Sommer A, Gaj MD (2019) The miR396–GRF regulatory module controls the embryogenic response in arabidopsis via an auxin-related pathway. Int J Mol Sci 20(20):5221. https://doi.org/10.3390/ijms20205221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Qiu N, Ding Q, Li J, Zhang Y, Li H, Gao J (2014) Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 15:807

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21:1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZJ, Wang WL, Zhuang J (2017) Developmental processes and responses to hormonal stimuli in tea plant (Camellia sinensis) leaves are controlled by GRF and GIF gene families. Funct Integr Genomics 17:503–512

    Article  CAS  PubMed  Google Scholar 

  • Yong Z, Ge L, Li G, Jiang L, Yang Y (2018) Characterization and expression analysis of growth regulating factor (GRF) family genes in cucumber. Arch Biol Sci 70:24–24

    Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, Li JS, Wang SC (2008) Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.). Plant Sci 175:809–817

    Article  CAS  Google Scholar 

  • Zhang J, Li Z, Jin J, Xie X, Zhang H, Chen Q, Luo Z, Yang J (2018) Genome-wide identification and analysis of the growth-regulating factor family in tobacco (Nicotiana tabacum). Gene 639:117–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li J, Ni Y, Jiang Y, Jiao Z, Li H, Wang T, Zhang P, Han M, Li L, Liu H, Li Q, Niu J (2021) Key wheat GRF genes constraining wheat tillering of mutant dmc. PeerJ 9:e11235

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Li K, Ning L, He J, Ma X, Li Z, Zhang X, Yin D (2019) Genome-wide analysis of the growth-regulating factor family in peanut (Arachis hypogaea L.). Int J Mol Sci 20:4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35:86–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed by the National Natural Science Foundation of China (Grant No. 32060069), the Natural Science Foundation of Jiangxi Province (Grant No. 20202BABL205023 and No. 20212ACB215004), and the Natural Science Foundation of Henan Province (Grant No. 212300410352).

Author information

Authors and Affiliations

Authors

Contributions

HL, TQ, and ZZ carried out data collection and bioinformatics analysis. RC and LZ performed the biological experiment. HY prepared the plant sample. HL, YW, and JS designed the experiments and wrote the manuscript. TQ and LK carried out the revisions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yihua Wang or Jianbo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: James Campanella.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Qiu, T., Zhou, Z. et al. Genome-Wide Analysis of the Growth-Regulating Factor Family in Medicago truncatula. J Plant Growth Regul 42, 2305–2316 (2023). https://doi.org/10.1007/s00344-022-10704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10704-3

Keywords

Navigation