Skip to main content
Log in

Deciphering the Role of Plant-Derived Smoke Solution in Ameliorating Saline Stress and Improving Physiological, Biochemical, and Growth Responses of Wheat

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant-derived smoke (PDS) is an emerging area of interest for research in plant growth during stress conditions. Two wheat varieties (NARC 2011 and NARC 2009) were imbibed in different dilutions of PDS solution and were subjected to salinity (50 mM and 100 mM NaCl). Among all three concentrations (1:100, 1:250, and 1:500), the PDS solution 1:500 has shown improvement in germination, morphological, physiological, and biochemical attributes. It has shown an increase in germination percentage by 48.9% and 27.7% at 50 mM and 100 mM salinity, respectively. Similar results were observed among plant physiological attributes (i.e., relative water content, leaf water potential, leaf osmotic potential, membrane stability index, leaf chlorophyll contents, ionic contents) and biochemical parameters (i.e., proline contents, free amino acid, soluble sugar, protein contents). Among antioxidants enzyme assay, superoxide dismutase activity has shown a reduction of 14.02% and 10.5% at 50 mM and 100 mM NaCl, respectively, by application of PDS solution (1:500 conc.). Compound 1 isolated as a result of repeated column chromatography was light brown and its name [1,4-dihydroxybenzene (hydroquinone)] was confirmed by mass spectrometry. Results have shown that lower concentrations (10 ppm and 25 ppm) exhibited more stimulatory effects on seed germination. In light of our findings, it can be suggested that PDS has shown positive and stimulatory effects on wheat variety NARC 2011 under stress conditions. Moreover, it can be used as an alternative to phytohormones in the coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data have been directly included in this paper.

References

  • Abd El-Samad HM, Shaddad MAK, Barakat N (2011) Improvement of plants salt tolerance by exogenous application of amino acids. J Med Plants Res 5(24):5692–5699

    CAS  Google Scholar 

  • Abdel-Hady BA (2007) Effect of zinc application on growth and nutrient uptake of barley plant irrigated with saline water. J Appl Sci Res 3:431–436

    CAS  Google Scholar 

  • Akeel A, Khan MMA, Jaleel H, Uddin M (2019) Smoke-saturated water and karrikinolide modulate germination, growth, photosynthesis and nutritional values of carrot (Daucus carota L.). J Plant Growth Regul 38:1387–1401

    Article  CAS  Google Scholar 

  • Antala M, Sytar O, Rastogi A, Brestic M (2020) Potential of karrikins as novel plant growth regulators in agriculture. Plants. https://doi.org/10.3390/plants9010043

    Article  Google Scholar 

  • Aslam MM, Akhter A, Jamil M, Khatoon A, Malook I, Ur Rehman S (2014) Effect of plant-derived smoke solution on root of Ipomoea marguerite cuttings under cobalt stress. J Bio-Mol Sci 2(1):6–11

    Google Scholar 

  • Awan JA, Salim UR (1997) Food analysis manual. Vet Agric Publ 5:2–7

    Google Scholar 

  • Baker RR, Coburn S, Liu C, Tetteh J (2005) Pyrolysis of saccharide tobacco ingredients: a TGA–FTIR investigation. J Anal Appl Pyrol 74(1–2):171–180

    Article  CAS  Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2019) The karrikin ‘calisthenics’: can compounds derived from smoke help in stress tolerance? Physiol Plant 65:290–302

    Article  Google Scholar 

  • Barkosky RR, Catavera J, Culbertson A (1999) Caffeic acid induced changes in plant water balance and photosynthesis in leafy spruge. In: Programs and abstracts, second world congress on allelopathy, 1–8 August 1999, Lakehead University, Canada, p 56

  • Bates LS, Waldron RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Baxter BJM, Granger JE, Van Staden J (1995) Plant-derived smoke and seed germination: is all smoke good? That is the burning question. S Afr J Bot 61:275–277

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown NAC (1993a) Promotion of germination of fynbos seeds by plant-derived smoke. New Phytol 123:575–583

    Article  CAS  PubMed  Google Scholar 

  • Brown NAC (1993b) Seed germination in the fynbos fire ephemeral, Syncarpha vestita (L.) B. Nord. is promoted by smoke, aqueous extracts of smoke and charred wood derived from burning the ericoid-leaved shrub, Passerina vulgaris Thoday. Int J Wildland Fire 3:203–206

    Article  Google Scholar 

  • Brown NAC, Botha PA (2004) Smoke seed germination studies and a guide to seed propagation of plants from the major families of the cape floristic region. S Afr J Bot 70:559–581

    Article  Google Scholar 

  • Brown NAC, Jamieson H, Botha PA (1994) Stimulation of germination in South African species of Restionaceae by plant-derived smoke. Plant Growth Regul 15:93–100

    Article  Google Scholar 

  • Brown NAC, Van Staden J, Daws MI, Johnson T (2003) Patterns in the seed germination response to smoke in plants from the cape floristic region. S Afr J Bot 69:514–525

    Article  Google Scholar 

  • Bruinsma J (1963) The quantitative analysis of chlorophylls a and b in plant extracts. Photochem Photobiol 2(2):241–249

    Article  CAS  Google Scholar 

  • Capell B, Doerffling K (1993) Genotype specific difference in chilling tolerance of maize in relation to chilling induce changes in water status and abscisic acid accumulation. Physiol Plant 88:638–646

    Article  CAS  PubMed  Google Scholar 

  • Carbonnel S, Das D, Varshney K, Kolodziej MC, Villaécija-Aguilar JA, Gutjahr C (2020) The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. PNAS License 117(35):21759

    Google Scholar 

  • Daws MI, Davies J, Pritchard HW (2007) Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul 51:73–82

    Article  CAS  Google Scholar 

  • De Lange JH, Boucher C (1990) Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot 56:700–703

    Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Río C, Millán E, García V, Appendino G, DeMesa J, Munoz E (2018) The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 157:122–133

    Article  PubMed  Google Scholar 

  • Dixon KW, Roche S (1995) The role of combustion products (smoke) in stimulating ex-situ and in-situ germination of Western Australian plants. Proc Int Plant Propag Soc 45:53–56

    Google Scholar 

  • Dixon TH, Robaudo S, Lee J, Reheis MC (1995) Constraints on present day Basin and Range deformation from space geodesy. Tectonics 14:755–772

    Article  Google Scholar 

  • Dixon KW, Merritt DJ, Flematti GR, Ghisalberti EL (2009) Karrikinolide: a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration, and agriculture. Acta Hort 813:20

    Google Scholar 

  • Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith FA (1951) Colorimetric method for the determination of sugars. Nature 168:167–168

    Article  CAS  PubMed  Google Scholar 

  • Elhamid EMA, Sadak M, Medhat M, Tawfik MM (2014) Alleviation of adverse effects of salt stress in wheat cultivars by foliar treatment with antioxidant 2—changes in some biochemical aspects, lipid peroxidation, antioxidant enzymes and amino acid contents. Agric Sci 5:1269–1280

    Google Scholar 

  • Elsadek MA, Yousef EAA (2019) Smoke-water enhances germination and seedling growth of four horticultural crops. Plants (basel) 8(4):104

    Article  CAS  Google Scholar 

  • Elwakil MA (2003) Use of antioxidant hydroquinone in the control of seed- borne fungi of peanut with special reference to the production of good quality seed. Pak J Plant Pathol 2(2):75–79

    Article  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RW (2004) A compound from smoke that promotes seed germination. Science 305(5686):977–977

    Article  CAS  PubMed  Google Scholar 

  • Giannopolistis CN, Ries SK (1997) Superoxide dismutase occurance in higher plants. Plant Physiol 59:304–314

    Google Scholar 

  • Girija C, Smith BN, Swamy PM (2002) Interactive effects ofsodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in Peanut (Arachis hypogaea L.). Environ Exp Bot 47:1–10

    Article  CAS  Google Scholar 

  • Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F (2018) Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 10:ly016

    Article  Google Scholar 

  • Gupta S, Plačková L, Kulkarni MG, Dolezal K, Staden JV (2019) Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiol 181:458–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics. https://doi.org/10.1155/2008/896451

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafeez F, Rizwan M, Saqib M, Yasmeen T, Ali S, Abbas T, Zia-ur-Rehman M, Qayyum MF (2019) Residual effect of biochar on growth, antioxidant defence and cadmium (Cd) accumulation in rice in a Cd contaminated saline soil. Pak J Agric Sci 56(1)

  • Haile A (2006) On-farm storage studies on sorghum and chickpea in Eritrea. Afr J Biotechnol 5:1537–1544

    Google Scholar 

  • Hamilton PB, Van Slyke DD (1943) Amino acid determination with ninhydrine. J Biol Chem 150:231–233

    Article  CAS  Google Scholar 

  • Iqbal M, Raza A, Zulfiqar S, Athar HR, Zafar ZU (2013) Physiological quality improvement of salt imbibed maize (Zea mays L.) seeds by priming with smoke water. Agrochimica 56:247–255

    Google Scholar 

  • Iqbal M, Asif S, Ilyas N, ul-Hassan F, Raja NI, Hussain M, Ejaz M, Saira H (2018) Smoke produced from plants waste material elicits growth of wheat (Triticum aestivum L.) by improving morphological, physiological and biochemical activity. Biotechnol Rep 17:35–44

  • ISTA (International Seed Testing Association) (1996) International rules for seed testing. Seed Science and Technology 21:1–228

    Google Scholar 

  • Izadi MH, Rabbani J, Emam Y, Pessarakli M, Tahmasebi A (2014) Effects of salinity stress on physiological performance of various wheat and barley cultivars. J Plant Nutr. https://doi.org/10.1080/01904167.2013.867980

    Article  Google Scholar 

  • Jamil M, Rha ES (2004) The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea L.). Kor J Plant Resour 7:226–232

    Google Scholar 

  • Jamil M, Ashraf M, Rehman S, Rha ES (2009) Cell membrane stability (CMS): a simple technique to check salt stress alleviation through seed priming with GA3 in canola. In: Ashraf M, Munir O, Ather HR (eds) Salinity and water stress, vol 44. Springer, Dordrecht, pp 117–127

    Chapter  Google Scholar 

  • Jamil M, Bashir S, Anwar S, Bibi S, Bangash A, Ullah F, Rha ES (2012) Effect of salinity on physiological and biochemical characteristics of different varieties of rice. Pak J Bot 44:7–13

    CAS  Google Scholar 

  • Jamil M, Malook I, Parveen S, Naz T, Ali A, Jan S, Rehman SU (2013) Smoke priming, a potent protective agent against salinity: Effect on proline accumulation, elemental uptake, pigmental attributes and protein banding patterns of rice (Oryza Sativa). J Stress Physiol Biochem 9:169–183

    Google Scholar 

  • Jamil M, Kanwal M, Aslam MM, Ullah Khan S, Malook I, Tu J, Rehman SU (2014) Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition. Aust J Crop Sci 8(2):159–170

    Google Scholar 

  • Joseph B, Jini D (2011) Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes. Asian J Agric Res 5:17–27

    CAS  Google Scholar 

  • Kamran M, Imran Q, Khatoon A, Lee I, Rehman SU (2013) Effect of plant extracted smoke and reversion of abscisic acid stress on lettuce. Pak J Bot 45(5):1541–1549

    CAS  Google Scholar 

  • Kamran M, Khan AL, Ali L, Waqas M, Hussain J, Harrasi AA, Kim YH, Kang SM, Yun B, Lee I (2017) Hydroquinone; a novel bioactive compound from plant derived smoke can cue seed germination of lettuce. Front Chem 5:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Katerji N, Van HJW, Hamdy A, Mastrorilli M (2004) Comparison of corn yield response to plant water stress caused by salinity and by drought. Agric Water Manag 65:95–101

    Article  Google Scholar 

  • Khan MA, Ansari R, Gul B, Qadir M (2006) Crop diversification through halophyte production on salt-prone land resources. CAB Rev 1(48):8

    Google Scholar 

  • Khan MHU, Khattak JZK, Jamil M, Malook I, Khan SU, Jan M, Din I, Saud S, Kamran M, Alharby H, Fahad S (2017) Bacillus safensis with plant-derived smoke stimulates rice growth under saline conditions. Environ Sci Pollut Res 24:23850–23863

    Article  Google Scholar 

  • Kulkarni M, Ascough GD, Staden JV (2007) Effects of foliar applications of smoke water and a smoke-isolated butenolide on seedling growth of okra and tomato. HortScience 42(1):179–182

    Article  CAS  Google Scholar 

  • Kulkarni MG, Ascough GD, Verschaeve L, Baeten K, Arruda MP, Van Staden J (2010) ffect of smoke-water anda smoke-isolated butenolide onthe growth and genotoxicity of commercial onion. Sci Hortic 124:434–439

    Article  CAS  Google Scholar 

  • Kulkarni MG, Light E, Van Staden J (2011) Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture. S Afr J Bot 77:972–979

    Article  Google Scholar 

  • Kumar S, Bawa S, Drabu S, Kumar R, Gupta H (2009) Biological activities of pyrazoline derivatives—a recent development. Recent Pat Anti-Infect Drug Discov 4(3):154–163

    Article  CAS  Google Scholar 

  • Li YT, He B, Wang YZ (2009) Exposure to cigarette smoke upregulates AP-1 activity and induces TNF-alpha over expression in mouse lungs. Inhalation Toxicol 21(7):641–647

    Article  CAS  Google Scholar 

  • Light ME, Van Staden J (2004) The potential of smoke in seed technology. S Afr J Bot 70:97–101

    Article  Google Scholar 

  • Liu T, Hou GG, Cardin M, Marquart L, Dubat A (2017) Quality attributes of whole-wheat flour tortillas with sprouted whole-wheat flour substitution. LWT 77:1–7. https://doi.org/10.1016/j.lwt.2016.11.017

    Article  CAS  Google Scholar 

  • Malook I, Atlas A, Rehman SU, Wang W, Jamil M (2014a) Smoke an environmental hazard: alleviate adverse effect of salt stress in rice. J Toxicol Environ Chem 96(5):755–767. https://doi.org/10.1080/02772248.2014.912776

    Article  CAS  Google Scholar 

  • Malook I, Atlas A, Rehman SU, Wang W, Jamil M (2014b) Smoke an environmental hazard: alleviate adverse effect of salt stress in rice***. J Toxicol Environ Chem 96(5):755–767. https://doi.org/10.1080/02772248.2014.912776

    Article  CAS  Google Scholar 

  • Malook I, Atlasa A, Rehman SU, Wang W, Jamil M (2014c) Smoke an environmental hazard: alleviate adverse effect of salt stress in rice***. J Toxicol Environ Chem 96(5):755–767. https://doi.org/10.1080/02772248.2014.912776

    Article  CAS  Google Scholar 

  • Meng YF, Chen H, Shuai X, Luo J, Ding S, Tang S, Xu J, Liu WL, Du J (2016) Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Sci Rep 6:22073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miri Y, Mirjalili SA (2013) Effect of salinity stress on seed germination and some physiological traits in primary stages of growth in purple Coneflower (Echinacea purpurea). Int J Agron Plant Prod 4(1):142–146

    Google Scholar 

  • Munns R, Richard A, James A, Uchli AL (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Naseer S, Nisar A, Ashraf M (2001) Effect of salt stress on germination and seedling growth of barley (Hordium vulgare L.). Pak J Biol Sci 4:359–360

    Article  Google Scholar 

  • Nasir M, Ahmad MA, Hussain S, Ismaeel M (2019) Significance of plant growth regulators (PGR’s) on the growth and yield of wheat crop. Sci J Chem 7(5):98–104

    Article  CAS  Google Scholar 

  • Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2009) Climate change: impact on agriculture and costs of adaptation. IFPRI Food Policy Report, Washington DC

    Google Scholar 

  • Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:7095–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosheen A, Bano A, Ullah F (2011) Nutritive value of canola (Brassica napus L.) as affected by plant growth promoting rhizobacteria. Eur J Lipid Sci Technol 113(11):1342–1346

    Article  CAS  Google Scholar 

  • Oueslati S, Karray-Bouraoui NH, Attia HM, Rabhi M, Ksouri R, Lachaal M (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant 32:289–296

    Article  CAS  Google Scholar 

  • Paasonen M, Hannukkala A, Ramo S, Haapala H, Hietaniemi V (2003) Smoke: a novel application of a traditional means to improve grain quality. In: Nordic Association of Agricultural Scientists 22nd congress, Turku, Finland

  • Qin J, Dong WY, He KN, Yu Y, Tan GD, Han L, Dong M, Zhang YY, Zhang D, Li AZ, Wang ZL (2010) NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea. Plant Soil Environ 56(7):325–332

    Article  CAS  Google Scholar 

  • Robin AH, Matthew C, Uddin MJ, Bayazid KN (2016) Salinity induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J Exp Bot 67:3719. https://doi.org/10.1093/jxb/erw064

    Article  CAS  PubMed  Google Scholar 

  • Saeed B, Gul H, Shah P, Khan A, Anwar SA, Ali S (2012) Yield of wheat varieties under solid and skip row geometries. ARPN J Agric Biol Sci 7(8):591–594

    Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:594–597

    Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sairam K, Sonber JK, Murthy TC, Subramanian C, Hubli RC, Suri AK (2012) Development of B4C–HfB2 composites by reaction hot pressing. Int J Refract Metal Hard Mater 35:32–40

    Article  CAS  Google Scholar 

  • Scholander P, Hammel H, Bradsheet E, Hemminogsen E (1965) Sap pressure in vascular plants. Plant Sci 148:339–345

    CAS  Google Scholar 

  • Shah G, Jan M, Afreen M, Anees M, Rehman S, Malook I, Jamil M (2016) Halophilic bacteria mediated phytoremediation of salt affected soils cultivated with rice. J Geochem Explor 174:59–65

    Article  Google Scholar 

  • Shah FA, Wei X, Wang Q, Liu W, Wang D, Yao Y, Hu H, Chen X, Huang S, Hou J, Lu R, Liu C, Ni J, Wu L (2020) Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant Sapium sebiferum. Front Plant Sci 11:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H (2017) Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8:1372. https://doi.org/10.3389/fpls.2017.01372

    Article  PubMed  PubMed Central  Google Scholar 

  • Sidari M, Mallamaci C, Muscolo A (2008) Drought, salinity and heat differently affect seed germination of Pinus pinea. J for Res 13:326–330

    Article  CAS  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39(4):1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Smol JP (2012) Climate change: a planet in flux. Nature 483:S12-15

    Article  CAS  PubMed  Google Scholar 

  • Sparg SG, Kulkarni MG, Light ME, Van Staden J (2005) Improving seedling vigour of indigenous medicinal plants with smoke. Bioresour Technol 96:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW (2007) Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2 H-furo [2, 3-c] pyran-2-one under laboratory and field conditions. Plant Soil 298(1):113–124

    Article  CAS  Google Scholar 

  • Sun ZW, Ren LK, Fan JW, Li Q, Wang KJ, Guo MM, Chen F (2016) Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant Soil Environ 62(11):515–521

    Article  CAS  Google Scholar 

  • Sunmonu TO, Kulkarni MG, Staden JV (2016) Smoke-water, karrikinolide and gibberellic acid stimulate growth in bean and maize seedlings by efficient starch mobilization and suppression of oxidative stress. S Afr J Bot 102:4–11. https://doi.org/10.1016/j.sajb.2015.06.015

    Article  CAS  Google Scholar 

  • Van Staden J, Jäger AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. S Afr J Bot 70:654–659

    Article  Google Scholar 

  • Van Staden J, Sparg SK, Kulkarni MG, Light ME (2006) Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2, 3-c] pyran-2-one, and its potential as a preconditioning agent. Field Crop Res 98(2–3):98–105

    Article  Google Scholar 

  • Waheed MA, Jamil M, Khan MD, Shakir SK, Ur-Rehman S (2016) Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress. Pak J Bot 48(5):1763–1774

    CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang Y, Ren H, Zhan Y (2018) Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing. Lebensmittel-Wissenschaft & Technologie 90:108–115

    Article  CAS  Google Scholar 

  • Weatherly PE (1950) Studies in water relations of cotton plants. The field measurment of water deficit in leaves. New Phytol 49:81–87

    Article  Google Scholar 

  • Xie T, Cui B, Bai J, Li S, Zhang S (2016) Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure. Phys Chem Earth Parts A/b/c. https://doi.org/10.1016/j.pce.2016.12.001

    Article  Google Scholar 

Download references

Funding

This research received no specific grant or funding.

Author information

Authors and Affiliations

Authors

Contributions

SS conducted the experiment, recorded data, and wrote result and discussion section. SA interpreted results and arranged the manuscript according to the journal instructions. NI supervised the experiment, manuscript write-up, and proofreading the final version. MI and SK accomplished data arrangement and formatting. ZA executed statistical analysis and results interpretation.

Corresponding author

Correspondence to Noshin Ilyas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Hinanit Koltai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabir, S., Ilyas, N., Asif, S. et al. Deciphering the Role of Plant-Derived Smoke Solution in Ameliorating Saline Stress and Improving Physiological, Biochemical, and Growth Responses of Wheat. J Plant Growth Regul 41, 2769–2786 (2022). https://doi.org/10.1007/s00344-021-10473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10473-5

Keywords

Navigation