Skip to main content
Log in

Physiological Effects of Smoke-water and Karrikinolide on Wheat Seedlings Grown under Boron Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

It is well-recognized that plant-derived smoke and karrikinolide (KAR1) are capable of promoting seed germination and seedling growth in many plants. In addition, recent findings have suggested that smoke and KAR1 can alleviate the deleterious effects of unfavorable environmental conditions on plant growth. In this study, we aimed to determine the effects of smoke-water and KAR1 on growth and physiological parameters in wheat (Triticum aestivum L.) seedlings subjected to boron (B) stress. To accomplish this goal, 7-day-old seedlings were grown in nutrient solutions containing 12 mM boric acid with or without the presence of smoke-water (0.4 and 1%) and KAR1 (0.1 µM) for 5 days. Hydrogen peroxide, malondialdehyde, proline, total phenolic contents, antioxidant enzyme activities, and B concentration were determined for each treatment group. The results of the present study show that smoke-water and KAR1 improve root growth and decrease B accumulation in wheat seedlings under B stress. Moreover, KAR1 and smoke-water (0.4%), albeit not significant, led to a slight reduction in B-triggered oxidative injury. Our findings also suggest that the increased activities of glutathione reductase, peroxidase, and superoxide dismutase in B-treated seedlings return almost to control levels in the presence of KAR1 and smoke-water (0.4%). In conclusion, this study provides evidence that smoke and KAR1 have the potential to be used in agriculture in order to reduce the negative effects of excess B on plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Reid, R., Boron toxicity and tolerance in crop plants, in Crop Improvement Under Adverse Conditions, Tuteja, N. and Gill, S., Eds., New York: Springer-Verlag, 2013, p. 333.

    Google Scholar 

  2. Nable, R.O., Bañuelos, G.S., and Paull, J.G., Boron toxicity, Plant Soil, 1997, vol. 193, p. 181.

    Article  CAS  Google Scholar 

  3. Reid, R., Update on boron toxicity and tolerance in plants, in Advances in Plant and Animal Boron Nutrition, Xu, F., Goldbach, H., Brown, P., Bell, R., Fujiwara, T., Hunt, C., Goldberg, S. and Shi, L., Eds., Dordrecht: Springer-Verlag, 2007, p. 83.

    Google Scholar 

  4. Çatav, Ş.S., Genç, T.O., Oktay, M.K., and Küçükakyüz, K., Effect of boron toxicity on oxidative stress and genotoxicity in wheat (Triticum aestivum L.), Bull. Environ. Contam. Toxicol., 2018, vol. 100, p. 502.

    Article  Google Scholar 

  5. Landi, M., Margaritopoulou, T., Papadakis, I.E., and Araniti, F., Boron toxicity in higher plants: an update, Planta, 2019, vol. 250, p. 1011.

    Article  CAS  Google Scholar 

  6. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, p. 373.

    Article  CAS  Google Scholar 

  7. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, p. 909.

    Article  CAS  Google Scholar 

  8. Landi, M., Degl’Innocenti, E., Pardossi, A., and Guidi, L., Antioxidant and photosynthetic responses in plants under boron toxicity: a review, Am. J. Agric. Biol. Sci., 2012, vol. 7, p. 255.

    Article  CAS  Google Scholar 

  9. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2012, p. 1.

    Article  Google Scholar 

  10. De Lange, J.H. and Boucher, C., Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue, S. Afr. J. Bot., 1990, vol. 56, p. 700.

    Article  Google Scholar 

  11. Çatav, Ş.S., Küçükakyüz, K., Tavşanoğlu, Ç., and Pausas, J.G., Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species, Basic Appl. Ecol., 2018, vol. 30, p. 65.

    Article  Google Scholar 

  12. Ghebrehiwot, H.M., Kulkarni, M.G., Kirkman, K.P., and Van Staden, J., Smoke-water and a smoke-isolated butenolide improve germination and seedling vigor of Eragrostis tef (Zucc.) Trotter under high temperature and low osmotic potential, J. Agron. Crop Sci., 2008, vol. 194, p. 270.

    Article  Google Scholar 

  13. Jamil, M., Kanwal, M., Aslam, M.M., Khan, S.U., Malook, I., Tu, J., and Rehman, S.U., Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition, Aust. J. Crop Sci., 2014, vol. 8, p. 159.

    Google Scholar 

  14. Khan, P., Rehman, S.U., Jamil, M., Irfan, S., Waheed, M.A., Aslam, M.M., Kanwal, M., and Shakir SK., Alleviation of boron stress through plant derived smoke extracts in Sorghum bicolor, J. Stress Physiol. Biochem., 2014, vol. 10, p. 153.

    Google Scholar 

  15. Akhtar, N., Khan, S., Malook, I., Rehman, S.U., and Jamil, M., Pb-induced changes in roots of two cultivated rice cultivars grown in lead-contaminated soil mediated by smoke, Environ. Sci. Pollut. Res., 2017, vol. 24, p. 21298.

    Article  CAS  Google Scholar 

  16. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant Sci., 2000, vol. 151, p. 59.

    Article  CAS  Google Scholar 

  17. Shabnam, N., Tripathi, I., Sharmila, P., and Pardha-Saradhi, P., A rapid, ideal, and eco-friendlier protocol for quantifying proline, Protoplasma, 2016, vol. 253, p. 1577.

    Article  CAS  Google Scholar 

  18. Maksimović, J.J.D. and Živanović, B.D., Quantification of the antioxidant activity in salt-stressed tissues, in Plant Salt Tolerance, Shambhala, S. and Cuin, T.A., Ed., New York: Springer-Verlag, 2012, p. 237.

    Google Scholar 

  19. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, p. 867.

    CAS  Google Scholar 

  20. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121.

    Article  CAS  Google Scholar 

  21. Foyer, C.H. and Halliwell, B., The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta, 1976, vol. 133, p. 21.

    Article  CAS  Google Scholar 

  22. Chance, B. and Maehly, A.C., Assay of catalases and peroxidases, Methods Enzymol., 1955, vol. 2, p. 764.

    Article  Google Scholar 

  23. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, p. 276.

    Article  CAS  Google Scholar 

  24. Surgun, Y., Çöl, B., and Bürün, B., 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation, Acta Physiol. Plant., 2016, vol. 38, p. 71.

    Article  Google Scholar 

  25. Baldwin, I.T., Staszak-Kozinski, L., and Davidson, R., Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata Torr. ex Watson, J. Chem. Ecol., 1994, vol. 20, p. 2345.

    Article  CAS  Google Scholar 

  26. Burger, B.V., Pošta, M., Light, M.E., Kulkarni, M.G., Viviers, M.Z., and van Staden, J., More butenolides from plant-derived smoke with germination inhibitory activity against karrikinolide, S. Afr. J. Bot., 2018, vol. 115, p. 256.

    Article  CAS  Google Scholar 

  27. Hu, H. and Brown, P.H., Absorption of boron by plant roots, Plant Soil, 1997, vol. 193, p. 49.

    Article  CAS  Google Scholar 

  28. Miwa, K. and Fujiwara, T., Boron transport in plants: co-ordinated regulation of transporters, Ann. Bot., 2010, vol. 105, p. 1103.

    Article  CAS  Google Scholar 

  29. Aftab, T., Khan, M.M.A., Idrees, M., Naeem, M., Moinuddin, and Hashmi, N., Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L, Protoplasma, 2011, vol. 248, p. 601.

    Article  CAS  Google Scholar 

  30. Saruhan, N., Saglam, A., and Kadioglu A., Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes, Acta Physiol. Plant., 2012, vol. 34, p. 97.

    Article  CAS  Google Scholar 

Download references

Funding

This work is a part of the Ph.D. thesis of the second author, funded by the Scientific Research Projects Coordination Unit of Muğla Sıtkı Koçman University (project nos. 15/153 and 16/106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Küçükakyüz.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: APX—ascorbate peroxidase; CAT—catalase; GR—glutathione reductase; KAR1—karrikinolide; MDA— malondialdehyde; NBT—nitro-blue tetrazolium; POD—peroxidase; ROS—reactive oxygen species; SOD—superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küçükakyüz, K., Çatav, Ş.S. Physiological Effects of Smoke-water and Karrikinolide on Wheat Seedlings Grown under Boron Stress. Russ J Plant Physiol 68, 552–558 (2021). https://doi.org/10.1134/S1021443721030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721030092

Keywords:

Navigation